煤炭工程 ›› 2023, Vol. 55 ›› Issue (6): 145-151.doi: 10. 11799/ ce202306026

• 研究探讨 • 上一篇    下一篇

基于LiDAR的煤矿井下自动驾驶边界检测与跟踪方法研究#br#

于 淼,张 晞,龚子任,黄丽莎,蒙俊舟,李华志,王章宇   

  1. 1. 中国矿业大学(北京),北京 100083 2. 北京航空航天大学,北京 100191 3. 北京踏歌智行科技有限公司,北京 100088
    4. 北京航空航天大学 合肥创新研究院,安徽 合肥 230012

  • 收稿日期:2023-02-01 修回日期:2023-03-30 出版日期:2023-06-20 发布日期:2023-06-30
  • 通讯作者: 黄丽莎 E-mail:huangls@student.cumtb.edu.cn

Research on Boundary Detection and Tracking Method Based on LiDAR in Underground Coal Mines Autonomous Vehicles

  • Received:2023-02-01 Revised:2023-03-30 Online:2023-06-20 Published:2023-06-30
  • Contact: Lisha -Huang E-mail:huangls@student.cumtb.edu.cn

摘要:

为了满足井下边界检测应用的迫切需求, 提出一种基于LiDAR的边界检测与跟踪方法, 该方法包含点云实时校正、点云栅格化、边界拟合以及边界跟踪四部分。针对井下道路边界不规则且坡度变化频繁的特征, 设计一种点云实时校正方法, 采用预校正和动态更新两个步骤实现地面点云和激光雷达坐标系平行。利用栅格思想将校正后点云映射到二维栅格图中, 有效避免路面凹凸不平对边界提取的影响。针对弯道和硐室场景造成的边界缺失问题, 采用卡尔曼滤波算法对点云进行稳定跟踪。在井下实车采集数据上的实验结果表明, 本研究提出的算法可以准确检测并稳定跟踪双侧边界, 在直道、弯道、硐室场景检测精度分别为97.5%, 93.2%, 88.3%, 并且满足自动驾驶的实时性。

关键词: 自动驾驶, 井工矿, 边界检测, LiDAR

Abstract:

Boundary detection places an important role in underground coal mine autonomous driving technologies. Accurate boundary information is beneficial to object detection and subsequent decision and control of autonomous trackless rubber-tyred vehicles. To meet the urgent demands in underground boundary detection, a method for underground boundary detection and tracking is proposed. The proposed method consists of four parts: real-time point cloud correction, point cloud gridding, boundary fitting and boundary tracking. Based on the characteristics of irregular boundaries and frequently changing slopes in underground mines, a real-time point cloud correction method is designed, which consists of pre-correction and dynamic correction to achieve parallelism between the road point cloud and the LiDAR coordinate system. To avoid the influence of uneven road surfaces on boundary extraction, the corrected point cloud is projected into a two-dimensional gridding map. To address the problem of blind areas caused by turnings and chambers, the Kalman Filter is utilized to track the missing point cloud. The performance of the proposed was evaluated on the data collected in real-world operation scenarios. The experimental results demonstrate that the proposed method can detect and track underground boundaries with the precision of 91.2%, as well as meet the real-time requirements in autonomous driving.

中图分类号: