[1] 李男男. 复合型顶板大采高工作面顶板控制技术实践研究[J]. 煤炭科学技术, 2022,50(S2): 33-37.LI Nannan. Practice research on roof control technology of large mining height combined roof face [J]. Coal Science and Technology, 2022,50(S2): 33-37. [2] 刘生优, 姚强岭. 近距离煤层大采高综放开采技术[J]. 采矿与安全工程学报, 2008,25(3): 347-351.LIU Shengyou, YAO Qiangling. Fully-Mechanized Top Coal Caving Mining Technology with Great Mining Height in Close-Distance Seams[J]. JOURNAL OF MINING AND SAFETY ENGINEERING, 2008,25(3): 347-351. [3] 杨俊哲, 刘前进. 8.8m超大采高工作面矿压显现规律实测及机理分析[J]. 煤炭科学技术, 2020,48(1): 69-74.YANG Junzhe, LIU Qianjin. Analysis and measured of strata behavior law and mechanism of 8.8 m ultra-high mining height working face[J]. Coal Science and Technology, 2020,48(1): 69-74. [4] 徐刚, 张震, 杨俊哲, 等. 8.8m超大采高工作面支架与围岩相互作用关系[J]. 煤炭学报, 2022,47(4): 1462-1472.XU Gang, ZHANG Zhen, YANG Junzhe, et al. Interaction between support and surrounding rock in 8.8 m super mining height working face[J]. Journal of China Coal Society, 2022,47(4): 1462-1472. [5] 刘忠全, 刘前进. 神东矿区8.8m超大采高工作面矿压综合监测与分析[J]. 煤炭工程, 2020,52(5): 81-86.LIU Zhongquan, LIU Qianjin. Comprehensive monitoring and analysis of mine pressure in Shendong8.8m super-large mining height working face[J]. Coal Engineering, 2020,52(5): 81-86. [6] 李志军, 姬智. 8.8 m超大采高工作面煤壁片帮原因及防护技术研究[J]. 煤炭工程, 2021,53(z1): 30-35.LI Zhijun, JI Zhi. Causes of rib spalling and the prevention measures in 8. 8m super-high mining face[J]. Coal Engineering, 2021,53(z1): 30-35. [7] 何吉清, 李猛, 安博超, 等. 大采高工作面覆岩运动与煤壁片帮规律[J]. 辽宁工程技术大学学报(自然科学版), 2024,43(2): 135-142.HE Jiqing, LI Meng, AN Bochao, et al. Overlying strata movement and rib spalling law of large mining height working face[J]. Journal of Liaoning Technical University(Natural Science Edition), 2024,43(2): 135-142. [8] 冀宏波, 李玉福. 8.8m超大采高综采工作面支架选型应用及顶板管理研究[J]. 中国煤炭, 2020,46(7): 92-96.JI Hongbo, LI Yufu. Research on support selection and roof management technology in 8.8 m ultra-high fully mechanized mining face[J]. China Coal, 2020,46(7): 92-96. [9] 李瑞楼, 卞涛. 浅埋超长综采工作面回采关键技术研究[J]. 中国矿业, 2023,32(z1): 344-349.LI Ruilou, BIAN Tao. Study on the key technology of shallow-buried and super-long fully mechanized coal face[J]. China Mining Magazine, 2023,32(z1): 344-349.[10] 鞠金峰, 许家林, 朱卫兵, 等. 7.0m支架综采面矿压显现规律研究[J]. 采矿与安全工程学报, 2012,29(3): 344-350, 356.JU Jinfeng, XU Jialin, WEI-BING ZHU, et al. Strata Behavior of Fully-Mechanized Face with 7.0 m Height Support[J]. Journal of Mining and Safety Engineering, 2012,29(3): 344-350, 356.[11] 许家林, 鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报, 2011,30(8): 1547-1556.XU Jialin, JU Jinfeng. STRUCTURAL MORPHOLOGY OF KEY STRATUM AND ITS INFLUENCE ON STRATA BEHAVIORS IN FULLY-MECHANIZED FACE WITH SUPER-LARGE MINING HEIGHT[J]. Chinese Journal of Rock Mechanics and Engineering, 2011,30(8): 1547-1556.[12] 韩会军, 王国法, 李明忠, 等. 超大采高综采工作面支护技术及装备研究现状[J]. 煤矿安全, 2024,55(5): 213-221.HAN Huijun, WANG Guofa, LI Mingzhong, et al. Present situation of support technology and equipment in fully mechanized mining face with supermining height[J]. Safety in Coal Mines, 2024,55(5): 213-221.[13] 王国法, 胡相捧, 刘新华, 等. 千米深井大采高俯采工作面四柱液压支架适应性分析[J]. 煤炭学报, 2020,45(3): 865-875.WANG Guofa, HU Xiangpeng, LIU Xinhua, et al. Adaptability analysis of four-leg hydraulic support for underhand working face with large mining height of kilometer deep mine[J]. Journal of China Coal Society, 2020,45(3): 865-875.[14] 许永祥, 王国法, 张传昌, 等. 特厚坚硬煤层超大采高综放开采合理采高研究与实践[J]. 采矿与安全工程学报, 2020,37(4): 715-722.XU Yongxiang, WANG Guofa, ZHANG Chuanchang, et al. Investigation and practice of the reasonable cutting height at longwall top coal caving face with super-large mining height in hard and extra-thick coal seams[J]. Journal of Mining and Safety Engineering, 2020,37(4): 715-722.[15] 雷照源, 姚一龙, 李磊, 等. 大采高智能化工作面液压支架自动跟机控制技术研究[J]. 煤炭科学技术, 2019,47(7): 194-199.LEI Zhaoyuan, YAO Yilong LI Lei, et al. Research on automatic follow-up control technology of hydraulic support in intelligent working face with large mining height[J]. Coal Science and Technology, 2019,47(7): 194-199.[16] 刘建伟, 雷照源, 马龙涛. 深部大采高工作面复合顶板运动规律及支架状态研究[J]. 煤炭工程, 2021,53(6): 95-100.JIAN-WEI LIU, ZHAO-YUAN LEI, LONG-TAO M. A. Movement law of composite roof and support status in high-cutting working faces[J]. Coal Engineering, 2021,53(6): 95-100.[17] 周金龙, 黄庆享. 浅埋大采高工作面顶板关键层结构稳定性分析[J]. 岩石力学与工程学报, 2019,38(7): 1396-1407.ZHOU Jinlong, HUANG Qingxiang. Stability analysis of key stratum structures of large mining height longwall face in shallow coal seam[J]. Chinese Journal of Rock Mechanics and Engineering, 2019,38(7): 1396-1407.[18] 黄克军, 黄庆享, 赵萌烨, 等. 浅埋大采高煤层群开采覆岩结构及矿压特征分析[J]. 煤炭工程, 2017,49(4): 70-73.HUANG Kejun, HUANG Qingxiang, ZHAO Mengye, et al. Features analysis of overlying strata and mine pressure in shallowburied coal seams group mining with large cutting height[J]. Coal Engineering, 2017,49(4): 70-73.[19] 任怀伟, 孟祥军, 李政, 等. 8 m大采高综采工作面智能控制系统关键技术研究[J]. 煤炭科学技术, 2017,45(11): 37-44.Ren Huaiwei. Research on Reasonable Working Height and Shield Beam Structure of Hydraulic Support with Large Mining Height [J]. Coal Science and Technology, 2011,39(04): 89-93.[20] 任怀伟. 大采高液压支架合理工作高度及掩护梁结构研究[J]. 煤炭科学技术, 2011,39(04): 89-93.Ren Huaiwei. Research on Reasonable Working Height and Shield Beam Structure of Hydraulic Support with Large Mining Height [J]. Coal Science and Technology, 2011,39(04): 89-93.[21] 赵毅鑫, 杨志良, 马斌杰, 等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报, 2020,45(01): 54-65.Zhao Yixin, Yang Zhiliang, Ma Binjie, et al. Mining pressure prediction analysis and model generalization based on deep learning in large mining height working face [J]. Journal of China Coal Society, 2020,45(01): 54-65.[22] 赵毅鑫, 令春伟, 刘斌, 等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报, 2021,38(01): 9-18.Zhao Yixin, Ling Chunwei, Liu Bin, et al. Study on fracture evolution and energy dissipation law of overlying rock in shallow buried ultra-high mining face [J]. Journal of Mining and Safety Engineering, 2021,38(01): 9-18.[23] 张小康, 何峰. 近距离下煤层综采工作面侧向支承压力分布研究[J]. 煤炭科学技术, 2012,40(6): 37-40.ZHANG Xiaokang, HE Feng. Study on Lateral Support Pressure Distribution of Fully Mechanized Coal Mining Face in the Contiguous Lower Seams[J]. Coal Science and Technology, 2012,40(6): 37-40. |