煤炭工程 ›› 2025, Vol. 57 ›› Issue (11): 105-114.doi: 10. 11799/ ce202511014

• 生产技术 • 上一篇    下一篇

可视化煤流运输智能监管系统研发与应用

孙晓虎,徐浩,高杰,张倍宁,胡 兵,银龙,吴喆峰,高曙晨,赵新闻   

  1. 1. 华能煤炭技术研究有限公司,北京 100070
    2. 中国矿业大学 煤炭精细勘探与智能开发全国重点实验室,江苏 徐州 221116
    3. 河南龙宇能源股份有限公司 陈四楼煤矿,河南 永城 476600 4. 华能煤业有限公司,北京 100070 5. 精英数智科技股份有限公司,山西 太原 030031
  • 收稿日期:2025-07-02 修回日期:2025-10-11 出版日期:2025-11-10 发布日期:2026-01-09
  • 通讯作者: 高杰 E-mail:gaojie020611@163.com

Development and application of a visual intelligent supervision system for coal flow transportation

  • Received:2025-07-02 Revised:2025-10-11 Online:2025-11-10 Published:2026-01-09

摘要:

针对煤矿井下带式输送机在潮湿、高温、多尘环境下长期运行易发生故障,导致停机频繁、成本增高的问题,提出一种基于云边协同与持续学习AI架构的智能监测与控制系统。通过融合计算机视觉、设备控制与大数据分析技术,研发了用于煤流运输异常监测的算法模型,构建了可视化的智能监测管理系统,实现了基于实时煤量的输送机智能调速、损伤跟踪、异常预警与处置的闭环管控。在核桃峪煤矿等现场的工业应用表明,该系统实现输送带速度测量误差低于±2%,煤量统计误差小于±5%,输送带空载率降低30%,年节电约15(kW·h)/km,托辊更换周期延长40%;同时减少巡检人员10人次/ d,非正常停机时间缩短15min/d,年创造直接经济效益200万元、间接效益1000万元。该系统显著提升了带式输送机运行的可靠性、经济性与智能化水平,为煤矿高效绿色运输提供了关键技术支撑。

关键词: 可视化, 煤流监测, 带式输送机运输, 智能监测, 智慧矿山

Abstract:

Due to long-term operation in humid, high-temperature, and dusty underground environments, coal mine belt conveyors are prone to various malfunctions, such as belt deviation, slippage, damage, breakage, as well as motor and roller failures, which require the equipment to be shut down for maintenance, resulting in increased coal production costs and decreased production efficiency. Based on the large-scale AI architecture featuring cloud-edge collaboration and on-the-fly edge learning, this paper integrates computer vision, equipment control, and big data analytics technologies to propose an intelligent monitoring algorithm for coal flow transportation systems. It develops key AI model technologies for conveyor belt anomaly detection, ultimately establishing a visual intelligent monitoring and management system for coal transportation. The implementation achieves intelligent speed regulation of conveyor belts based on coal volume monitoring, while forming a closed-loop operational process that encompasses damage tracking, anomaly warning, and incident handling throughout the conveyor belt operation. The application has been successful in Hetaoyu coal mine, belt speed measurement error <±2%, coal volume statistics error < ±5%, 30% reduction in belt idling rate, annual electricity savings of approximately 150,000 kWh per kilometer of conveyor belt, reduced mechanical impact intensity, 40% extension of roller replacement cycle, reducing the number of belt inspection workers for 6 km of the main inclined shaft by 10 times per day, reducing abnormal downtime by 15 minutes per day, extending the service life of the belt, significantly reducing staff and increasing efficiency, and creating a direct economic benefit of RMB 2 million per year and an indirect economic benefits exceeding RMB 10 million per year. The application effect is good.

中图分类号: