煤炭工程 ›› 2025, Vol. 57 ›› Issue (11): 131-140.doi: 10. 11799/ ce202511017

• 研究探讨 • 上一篇    下一篇

冲击地压多参量智能综合预测模型构建及应用

管新邦,赵善坤,王 寅,李云鹏,孔令海,李一哲,刘军宏   

  1. 1. 煤炭科学技术研究院有限公司,北京 100013
    2. 煤炭科学研究总院 煤矿灾害防控全国重点实验室,北京 100013 3. 中煤大同能源有限公司,山西 大同 037001
  • 收稿日期:2025-04-30 修回日期:2025-06-04 出版日期:2025-11-10 发布日期:2026-01-09
  • 通讯作者: 赵善坤 E-mail:471810872@qq.com

Construction and application of a multi-parameter intelligent comprehensive prediction model for rockburst

  • Received:2025-04-30 Revised:2025-06-04 Online:2025-11-10 Published:2026-01-09
  • Contact: GUAN Xinbang E-mail:471810872@qq.com

摘要:

为了构建一种“机理约束-数据驱动”的冲击地压智能预警模型,实现危险性的“地点-时间-强度”一体化预测。基于多源异构数据,建立了融合实时监测、开采技术、煤岩体强度及地质条件的多参量指标体系,并引入时序与空间参数构建时空耦合预警模块。通过数据归一化、K-means聚类补全及主成分分析进行特征处理,分别采用L2正则化多元线性回归、BP神经网络及RNN-GRU神经网络构建预测模型并进行对比。结果表明:L2正则化模型可解析各因素权重,支撑机理研究与单指标预警;RNN-GRU模型凭借门控循环单元显著提升了对时序动态特征的捕捉能力,结合测点位置编码与改进K-means聚类,实现了冲击危险的时空分布预测。在呼吉尔特矿区现场应用中,该模型预测震级与实际接近,时间误差小于2.5h,位置误差小于50m,综合准确率达85%,为冲击地压智能预警提供了可靠方法。

关键词: 冲击地压, 监测预警, 线性回归, 神经网络, 危险性预测

Abstract:

To establish a "mechanism-constrained and data-driven" rockburst monitoring and early warning system, artificial intelligence algorithms are employed to construct nonlinear relational models that deeply explore inherent data patterns, thereby achieving an integrated "location-time-intensity" tripartite early warning framework. A multi-parameter rockburst risk prediction index system was established, incorporating real-time monitoring indicators, mining technical indicators, coal-rock mass strength indicators, and geological condition indicators. By introducing temporal sequence data and spatial location parameters, a spatiotemporally coupled early warning module was developed. Key methodologies include: scalar normalization of indicator parameters using normalization equations; K-means clustering to impute missing target values; correlation analysis and principal component analysis (PCA) to investigate inter-factor relationships and reveal mappings between data and geological/mining conditions, thereby unifying the "mechanism" essence with "data" phenomena. Three multi-parameter comprehensive early warning models—L2-regularized multiple linear regression, BPNN (Backpropagation Neural Network), and RNN-GRU (Recurrent Neural Network with Gated Recurrent Units)—were constructed and comparatively evaluated. Validation results demonstrate that the L2-regularized linear regression model effectively outputs fitting relationships between factors and rockburst risks while providing weight values of indicators for mechanistic studies. In contrast, the RNN-GRU model exhibits superior computational efficiency, faster convergence, and enhanced capability to capture dynamic features in time-series data through its GRU architecture. By integrating One-Hot encoding of monitoring point coordinates and improved K-means clustering for spatial risk localization, the model achieves spatiotemporal distribution prediction of rockburst hazards. Field validation at a rockburst-prone mine in Hujierte Mining District demonstrated, predicted magnitudes closely benchmarked against actual events, achieving <2.5-hour temporal MAE and <50-meter spatial RMSE, with spatiotemporal prediction reliability reaching 85% confidence level.

中图分类号: