| [1] 谢和平,王金华,姜鹏飞,等.煤炭科学开采新理念与技术变革研究[J].中国工程科学,2015,17(09):36-41.XIE Heping, WANG Jinhua, JIANG Pengfei, et al. Research on new concept and technological change of coal scientific mining[J]. China Engineering Science, 2015, 17(09):36-41.[2] 樊红卫,张旭辉,曹现刚,等.智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J].振动与冲击,2020,39(24):194-204.FAN Hongwei, ZHANG Xuhui, CAO Xiangang, et al. Research status and prospect of coal mine machinery fault diagnosis in China under the background of smart mine[J]. Vibration and Shock,2020,39(24):194-204.[3] Mao Q, Zhang Y, Zhang X, et al. Accurate fault location meth-od of the mechanical transmission system of shearer ranging arm[J]. IEEE Access, 2020, 8: 202260-202273.[4] 雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(05):94-104.LEI Yaguo, JIA Feng, KONG Detong, et al. Opportunities and chal-lenges of intelligent fault diagnosis of machinery under big da-ta[J]. Journal of Mechanical Engineering,2018,54(05):94-104.[5] 宫文峰,张美玲,陈辉.基于深度学习的旋转机械大数据智能故障诊断方法[J].计算机集成制造系统,2025,31(01):264-277.GONG Wenfeng, ZHANG Meiling, CHEN Hui. Intelligent fault diagnosis method based on deep learning of rotating machin-ery under big data[J]. Computer Integrated Manufacturing Sys-tems, 2025, 31(01):264-277.[6] 王海涛,郭一帆,史丽晨.基于SC-ResNeSt及频域格拉姆角场的滚动轴承故障诊断方法[J/OL].计算机集成制造系统,1-21.WANG Haitao, GUO Yifan, SHI Lichen. Fault diagnosis method of rolling bearings based on SC-ResNeSt and Gram angle field in frequency domain[J/OL]. Computer Integrated Manufacturing Systems, 1-21.[7] 宋庭新,黄继承,刘尚奇,等.小样本下基于DWT和2D-CNN的齿轮故障诊断方法[J/OL].计算机集成制造系统,1-15.SONG Tingxin, HUANG Jicheng, LIU Shangqi, et al. Gear fault diagnosis method based on DWT and 2D-CNN in small sam-ples[J/OL]. Computer Integrated Manufacturing Systems, 1-15.[8] 肖俊青,金江涛,李春,等.基于深度学习风力机齿轮箱的故障诊断[J].太阳能学报,2023,44(05):302-309.XIAO Junqing, JIN Jiangtao, LI Chun, et al. Fault diagnosis of wind turbine gearboxes based on deep learning[J]. Journal of Solar Energy,2023,44(05):302-309.[9] 谢锋云,李刚,王玲岚,等.改进时序灰度图和深度学习的齿轮箱故障诊断[J].计算机工程与应用,2024,60(13):338-344.XIE Fengyun, LI Gang, WANG Linglan, et al. Gearbox fault diagno-sis based on improved timing grayscale images and deep learn-ing[J]. Computer Engineering and Applica-tions,2024,60(13):338-344.[10] 王妮妮,马萍,张宏立,等.基于多尺度深度卷积网络特征融合的滚动轴承故障诊断[J].太阳能学报,2022,43(04):351-358.WANG Nini, MA Ping, ZHANG Hongli, et al. Rolling bearing fault diagnosis based on multi-scale deep convolutional network feature fusion[J]. Journal of Solar Energy, 2022, 43(04):351-358.[11] Li X, Wang W, Hu X, et al. Selective kernel net-works[C]//Proceedings of the IEEE/CVF conference on com-puter vision and pattern recognition. 2019: 510-519.[12] 时培明,吴术平,于越,等.基于注意力机制和深度残差网络的滚动轴承故障诊断[J].燕山大学学报,2024,48(01):39-47.SHI Peiming, WU Shuping, YU Yue, et al. Rolling bearing fault diagnosis based on attention mechanism and deep residual network[J]. Journal of Yanshan University,2024,48(01):39-47.[13] 徐硕,邓艾东,杨宏强,等.基于改进残差网络的旋转机械故障诊断[J].太阳能学报,2023,44(07):409-418.XU Shuo, DENG Yidong, YANG Hongqiang, et al. Fault Diagnosis of Rotating Machinery Based on the improved residual net-work[J]. Journal of Solar Energy, 2023,44(07):409-418.[14] Peiming S ,Shuping W ,Xuefang X , et al.TSN: A novel intelli-gent fault diagnosis method for bearing with small samples un-der variable working conditions[J].Reliability Engineering and System Safety,2023,240[15] Liu Y, Li X, Yang L, et al. A CNN-Transformer Hybrid Recogni-tion Approach for sEMG-based Dynamic Gesture Prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2023.[16] Ze Liu, Yutong Lin, Yue Cao, et al. Swin Transformer: Hierar-chical Vision Transformer using Shifted Windows. 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021;0 (0):0-0.[17] 李俊杰,易诗,何润华,等.基于窗口注意力聚合Swin Transform-er的无人机影像语义分割方法[J].计算机工程与应用,2024,60(15):198-210.LI Junjie, YI Shi, HE Runhua, et al. A semantic segmentation meth-od for UAV images based on windowed attention aggregation Swin Trans-former[J]. Computer Engineering and Applications, 2024, 60(15):198-210.[18] 朱艳通,刘鹏,王永波,等.基于UWB与视觉融合的储煤场目标检测与定位方法研究[J/OL].煤炭科学技术,1-11.ZHU Yantong, LIU Peng, WANG Yongbo, et al. Research on target detection and localization method of coal storage yard based on UWB and vision fusion[J/OL]. Coal Science and Technolo-gy,1-11.[19] 周舟,陈捷,吴明明.基于CWT和优化Swin Transformer的风电齿轮箱故障诊断方法[J].振动与冲击,2024,43(15):200-208.ZHOU Zhou, CHEN Jie, WU Mingming. Fault diagnosis method of wind power gearbox based on CWT and optimized Swin Trans-former[J]. Vibration and Shock, 2024, 43(15):200-208.[20] Hong Y Y, Pula R A. Diagnosis of photovoltaic faults using digital twin and PSO-optimized shifted window transformer[J]. Applied Soft Computing, 2024, 150: 111092.[21] 刘艳丽,王浩,张帆.基于轻量卷积和模型优化的电弧故障检测方法[J].仪器仪表学报,2024,45(10):38-49.LIU Yanli, WANG Hao, ZHANG Fan. Arc fault detection method based on lightweight convolution and model optimization[J]. Journal of Instrumentation, 2024, 45(10):38-49.[22] Park J, Woo S, Lee J Y, et al. Bam: Bottleneck attention mod-ule[J]. arXiv preprint arXiv:1807.06514, 2018.[23] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 11531-11539. |