[1]S. Guo, J. H. Wang, and J. L. Wei, “A new model based approach for power plant Tube-ball mill condition monitoring and fault detection ,” Energy Convers. Manag. , vol. 80, no. 2, pp. 10-19, 2014.
[2]N. Rees and F. Fan, “Modelling and control of pulverised fuel coal mills,” in Thermal Power Plant Simulation and Control, 1st ed., D. Flynn, Ed. London, U.K.: IEE, 2003.
[3]J. L. Wei, J. Wang, and Q. H. Wu, “Development of a multi-segment coal mill model using an evolutionary computation technique,” IEEE Trans. Energy Convers., vol. 22, no. 3, pp. 718-727, 2007.
[4]Fan G Q, Rees N W. An intelligent expert system (KBOSS) for power plant coal mill supervision and control [J]. Control Engineering Practice, 1997, 5(1):101-108.
[5]Odgaard P F, Lin B, J?rgensen S B. Observer-based and regression model-based detection of emerging faults in coal mills[J]. Fault Detection Supervision & Safety of Technical Processes, 2006, 39(13):687-692.
[6]Odgaard P F, Mataji B. Observer-based fault detection and moisture estimating in coal mills[J]. Control Engineering Practice, 2008, 16(8):909-921.
[7]V. Vapnik, Statistical Learning Theory, Springer, Berlin, 1998.
[8]Y. Pang, K. Zhang, Y. Yuan, and K. Wang, “Distributed object detection with linear SVMs,” IEEE Trans. Cybern., vol. 44, no. 11, pp. 2122–2133, Nov. 2014.
[9]J. Xu et al., “The generalization ability of SVM classification based on Markov sampling,” IEEE Trans. Cybern., vol. 45, no. 6, pp. 1169–1179, Jun. 2015.
[10]D. Iacoviello, A. Petracca, M. Spezialetti, and G. Placidi, “A classification algorithm for electroencephalography signals by self-induced emotional stimuli,” IEEE Trans. Cybern., vol. PP, no. 99, pp. 1-10, 2015.
[11]A. Dong, F. L. Chung, Z. H. Deng, and S. T. Wang, “Semi-supervised SVM with extended hidden features,” IEEE Trans. Cybern., vol. PP, no. 99, pp. 1-14, 2015.
[12]P. Costamagna, A. D. Giorgi, L. Magistri, et al, “A classification approach for model-based fault diagnosis in power generation systems based on solid oxide fuel cells,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 676-687, 2016.
[13]Adankon M M, Cheriet M. Model selection for the LS-SVM. Application to handwriting recognition [J]. Pattern Recognition, 2009, 42(12):3264-3270.
[14]Zheng P P, Feng J, Li Z, et al. A novel SVD and LS-SVM combination algorithm for blind watermarking [J]. Neurocomputing, 2014, 142(1):520-528.
[15]Wang P, Tian J W, Gao C Q. Infrared small target detection using directional highpass filters based on LS-SVM[J]. Electronics Letters, 2009, 45(3):156-158.
[16]Zhou H R, Zheng P E, Zhao C X. LS-SVM parameters selection based on genetic algorithm and its application in economic forecasting [J]. Journal of Computer Applications, 2007, 27(6):1418-1417.
|