煤炭工程 ›› 2024, Vol. 56 ›› Issue (10): 82-89.doi: 10.11799/ce202410009

• 专家论坛 • 上一篇    下一篇

基于PSO-Kriging算法的三维地质建模技术研究

丁自伟,刘江,王小勇,等   

  1. 《煤炭工程》杂志社
  • 收稿日期:2024-12-24 修回日期:2024-09-18 出版日期:2023-10-20 发布日期:2025-01-16
  • 通讯作者: 苏越 E-mail:116348570@qq.com

Research on 3D Geological Modeling Technology Based on PSO Kriging Algorithm

  • Received:2024-12-24 Revised:2024-09-18 Online:2023-10-20 Published:2025-01-16

摘要: 三维地质模型的构建对于理解和预测地下结构至关重要。地质钻孔数据能够反映岩体空间分布和地质构造特征,本研究以小保当一号煤矿11盘区内的23个地质钻孔数据为基础,采用添加虚拟地层的方法解决了地层缺失与地层重复现象,构建共计27层地层的三维地质模型以及二维剖面模型。此外,针对传统的克里金方法在处理复杂地质数据参数选择困难的问题,采用粒子群算法对传统克里金插值方法中的块金值(C0)、偏基台值(C)和变程(a)三个关键参数进行寻优,从而克服普通克里金插值参数选择的主观性和不确定性,采用实际验证法选取了研究区内四个钻孔来对比插值结果,结果表明经过PSO优化的Kriging算法在X3-1、X3-2、K3-4、K3-5四个钻孔的RMSE值分别降低至1.184、1.267、1.606、1.560,相比于Kriging的RMSE平均降低了31%,且PSO-Kriging算法在四个钻孔处对2-2煤层的插值结果与实际值相比较误差分别为1.00 m、0.01 m、0.11 m和0.03 m,比Kriging插值结果更接近实际值,表明了所提方法的有效性和优越性。

关键词: 克里金插值, 粒子群算法, 三维地质建模, 地质统计学, 空间插值

Abstract: The construction of three-dimensional geological models is crucial for understanding and predicting underground structures. Geological drilling data can reflect the rock mass Based on the spatial distribution and geological structure characteristics, this study uses 23 geological drilling data from the 11th panel of Xiaobaodang No.1 coal mine as the basis, and adopts The method of adding virtual strata solves the problems of missing and duplicated strata, and constructs a three-dimensional geological model of a total of 27 strata, as well as two Dimensional profile model. In addition, in response to the difficulty of parameter selection in processing complex geological data using traditional kriging methods, this paper adopts a granular approach The subgroup algorithm is applied to the block values (C0) in traditional kriging interpolation methods Optimize the three key parameters of off base station value (C) and variable range (a), In order to overcome the subjectivity and uncertainty of parameter selection in ordinary kriging interpolation, the actual verification method was used to select four boreholes in the study area To compare the interpolation results, the results show that the Kriging algorithm optimized by PSO performs well in X3-1 The four boreholes X3-2, K3-4, and K3-5 The RMSE values decreased to 1 184, 1 267, 1 606, 1 560, an average reduction of 31% in RMSE compared to Kriging, and PSO Kriging algorithm applies to 2 at four drilling locations -The interpolation results of coal seam 2 have an error of 1 compared to the actual values 00 meters 0.01 meters 0.11m and 0 03 m, which is closer to the actual value than Kriging interpolation, indicates the effectiveness and superiority of the proposed method.