煤炭工程 ›› 2025, Vol. 57 ›› Issue (7): 146-155.doi: 10. 11799/ ce202507020

• 研究探讨 • 上一篇    下一篇

压力对内混式喷嘴雾化特性及降尘效率的影响研究

金智新,杨富康,曹孟涛,等   

  1. 1. 太原理工大学 安全与应急管理工程学院,山西 太原 030024

    2. 太原理工大学 山西省煤矿智能装备工程研究中心,山西 太原 030024

    3. 智能采矿装备技术全国重点实验室,山西 太原 030032

    4. 新疆智能装备研究院,新疆 阿克苏 843000

    5. 太原理工大学 机械与运载工程学院,山西 太原 030024

  • 收稿日期:2024-10-11 修回日期:2024-11-23 出版日期:2025-07-11 发布日期:2025-08-14
  • 通讯作者: 曹孟涛 E-mail:caomengtao@tyut.edu.cn

Influence of pressure on the atomization characteristics and dust suppression efficiency of internal-mixing nozzle

  • Received:2024-10-11 Revised:2024-11-23 Online:2025-07-11 Published:2025-08-14
  • Contact: Mengtao Cao mengtaoCao E-mail:caomengtao@tyut.edu.cn

摘要:

为了研究压力对内混式喷嘴雾化特性及降尘效率的影响,利用自行搭建的喷雾降尘平台,对气压和水压在0.15~0.4MPa范围内的雾化特性及降尘效率进行了试验研究,探究两相流体压力对喷嘴流量、雾化角、雾滴粒径及降尘效率的影响机制。结果表明:在恒定供水压力条件下,随着供气压力增加,耗气量近似线性递增,耗水量呈指数递减,雾化角逐渐减小,各种雾滴粒径参数均减小,当气压进一步提高时,雾滴粒径减小,速率逐渐减缓,粒径分布更加集中。气压由0.15MPa增加至0.4MPa,耗气量增加47.5L/min,耗水量降低0.61L/min,降幅近83.56%,雾化角减小38°,D[3,2]减小了约54μm。在恒定供气压力条件下,水压增加会使气流量减少,水流量增加,雾化角增大,继续增加水压,气液相互作用减弱,雾化角又减小。雾滴粒径分布范围扩大,频度峰值呈下降趋势。水压从0.15MPa增加至0.4MPa,气流量减少10.2L/min,水流量增加0.94L/min,雾化角增大16°,D[3,2]约增大了31μm。增加供气压力或供水压力均会导致全尘和呼吸性粉尘的降尘效率呈现先上升后下降的规律。结合压力对喷嘴流量、雾化角及雾滴粒径的影响分析,确定最优的供水压力和供气压力组合为PL =0.3MPa、Pair =0.25MPa。在此条件下,全尘和呼吸性粉尘的降尘效率分别达到71.99%和45.96%。

关键词:

喷雾降尘 , 雾化特性 , 气压 , 水压 , 内混式空气雾化喷嘴

Abstract:

To investigate the influence of pressure on the atomization characteristics and dust suppression efficiency of internal-mixing nozzles, experiments were conducted using a custom-built spray dust suppression platform. The study examined the atomization behavior and dust suppression efficiency within the pressure range of 0.15 MPa to 0.4 MPa for both air and water, aiming to elucidate the mechanisms by which two-phase fluid pressure affects nozzle flow rate, atomization angle, droplet size, and dust suppression performance. The results demonstrate that, under constant water pressure, as air pressure increases, air consumption rises almost linearly, while water consumption decreases exponentially. The atomization angle progressively narrows, and the droplet size metrics decline accordingly. When air pressure is further elevated, the rate of droplet size reduction diminishes, and the droplet size distribution becomes more concentrated. As air pressure increases from 0.15 MPa to 0.4 MPa, air consumption increases by 47.5 L/min, water consumption decreases by 0.61 L/min (a reduction of approximately 83.56%), the atomization angle reduces by 38°, and D[3,2] decreases by about 54 μm. Under constant air pressure, increasing water pressure reduces air flow and increases water flow, leading to a widening of the atomization angle. However, further increases in water pressure weaken the gas-liquid interaction, causing the atomization angle to decrease once more. The droplet size distribution broadens, and the frequency peak shifts downward. When water pressure rises from 0.15 MPa to 0.4 MPa, air flow decreases by 10.2 L/min, water flow increases by 0.94 L/min, the atomization angle increases by 16°, and D[3,2] increases by approximately 31 μm. Increases in either air or water pressure result in an initial rise followed by a decline in dust suppression efficiency for both total and respirable dust. Based on an analysis of the effects of pressure on nozzle flow rate, atomization angle, and droplet size, the optimal combination of water and air pressures was identified as PL = 0.3 MPa and Pair = 0.25 MPa. Under these conditions, the dust suppression efficiency for total dust and respirable dust reached 71.99% and 45.96%, respectively.

中图分类号: