煤炭工程 ›› 2025, Vol. 57 ›› Issue (7): 185-193.doi: 10. 11799/ ce202507025

• 研究探讨 • 上一篇    下一篇

基于ECA-Segformer的多尺度特征煤炭CT图像分割研究

石宇含,董良,薛舸航,等   

  1. 1. 中国矿业大学 煤炭加工与高效洁净利用教育部重点实验室,江苏 徐州 221000

    2. 中国矿业大学 化工学院,江苏 徐州 221000

    3. 国能榆林能源有限责任公司,陕西 榆林 719000


  • 收稿日期:2024-10-28 修回日期:2025-01-06 出版日期:2025-07-11 发布日期:2025-08-14
  • 通讯作者: 董良 E-mail:dongl@cumt.edu.cn

Research on multi scale feature coal CT image segmentation based on ECA-Segformer

  • Received:2024-10-28 Revised:2025-01-06 Online:2025-07-11 Published:2025-08-14
  • Contact: dongl dongldongl E-mail:dongl@cumt.edu.cn

摘要:

机器视觉在煤炭加工分选领域得到了广泛的运用,然而在图像分割时,仍存在多尺度特征煤炭颗粒CT图像中背景与前景的分离难题,以及因颗粒尺寸不一致而导致的分割挑战。为了解决上述问题,提出了一种基于改进ECA-Segformer模型的煤炭颗粒CT图像语义分割方法。针对颗粒多尺度分布不均易发生的漏检现象,模型引入了ECA-Net注意力机制,有效增强网络的表征能力,旨在提高分割精度。此外,采用Squared ReLU激活函数更好地捕捉前景与背景的不同特征,以提高煤炭颗粒CT图像的分割效率。基于自建煤炭颗粒的CT数据集开展实验,实验结果表明,基于改进的Segformer模型综合检测能力最优,平均交并比达87.78%,平均像素精度达到93.44%,准确率高达93.46%,相较于基础Segformer网络分别提升了2.12、1.30、0.58百分点。针对分割后的数据分析能够研究煤炭颗粒的粒度分布统计,这对煤炭高效智能化分选具有重要意义。

关键词: 多尺度特征 , Segformer模型 , 煤炭颗粒 , CT图像 , 智能化分选

Abstract:

Machine vision has been widely used in the field of coal processing and sorting. However, in image segmentation, there are still challenges in separating the background and foreground in multi-scale feature coal particle CT images, as well as segmentation challenges caused by inconsistent particle sizes. This paper proposes a semantic segmentation method for coal particle CT images based on an improved ECA-Segformer model. In order to address the phenomenon of missed detection that occurs due to uneven distribution of particles at multiple scales, the model introduces the ECA-Net attention mechanism to effectively enhance the network's representation ability, aiming to improve segmentation accuracy. In addition, the use of the Squared ReLU activation function can better capture the different features of the foreground and background, thereby improving the segmentation efficiency of coal particle CT images. Experiments were conducted using a self-built CT dataset of coal particles. The results showed that the improved Segformer model had the best comprehensive detection ability, with an average intersection-union ratio of 87.78%, an average pixel accuracy of 93.44%, and an accuracy rate of 93.46%. Compared to the basic Segformer network, it improved by 2.12%, 1.30%, and 0.58% respectively. The analysis of the segmented data can study the particle size distribution statistics of coal particles, which is of great significance for efficient and intelligent separation of coal.

中图分类号: