煤炭工程 ›› 2025, Vol. 57 ›› Issue (10): 68-77.doi: 10. 11799/ ce202510009

• 专题论坛 • 上一篇    下一篇

门克庆煤矿水力压裂切顶卸压裂隙时空演化规律研究

武少国,王元杰,苏士杰,赵乾,刘宁,李岩   

  1. 1. 乌审旗蒙大矿业有限责任公司,内蒙古 鄂尔多斯 017300

    2. 中煤科工开采研究院有限公司,北京 100013

    3. 矿山顶板灾害防控国家矿山安全监察局重点实验室,北京 100013

    4. 中天合创能源有限责任公司,内蒙古 鄂尔多斯 017300

  • 收稿日期:2025-05-26 修回日期:2025-07-03 出版日期:2025-10-10 发布日期:2025-11-12
  • 通讯作者: 武少国 E-mail:942470269@qq.com

Study on the temporal and spatial evolution law of fractures in Menkeqing coal mine by hydraulic fracturing to cut roof and relieve pressure

  • Received:2025-05-26 Revised:2025-07-03 Online:2025-10-10 Published:2025-11-12
  • Contact: shaoguo -wu E-mail:942470269@qq.com

摘要:

为明确煤矿水力压裂切顶卸压过程中岩石水力裂隙的时空演化规律,研究采用离散元方法构建水力压裂裂隙扩展与颗粒运移耦合模型,系统分析裂隙数量及形态、颗粒运移特征、损伤区面积对水压、内聚力、孔隙率及杨氏模量的响应规律。结果表明: ①水压增大促使裂隙从线性扩展向复杂网状或分支形态转变,为颗粒运移提供更多通道,进而扩大损伤区面积;但过高水压会引发压实效应,降低裂隙通道有效性并抑制损伤区扩展。②内聚力提升使裂隙扩展更趋规则,颗粒位移模式由无序转为有序;孔隙率影响裂隙扩展复杂性与颗粒位移幅度,中等孔隙率条件下颗粒位移范围与幅度最优;杨氏模量增大使裂隙扩展路径更集中,颗粒位移的方向性显著增强。③裂隙时间演化过程可划分为起裂阶段(无裂隙增长)、微裂纹扩展阶段(裂隙缓慢增长)及裂纹快速扩展阶段(裂隙稳定快速增长),且不同变量条件下的水力裂隙时间演化曲线均呈指数函数分布。研究成果可为煤矿顶板水力压裂切顶卸压工艺参数优化及卸压效果提升提供理论支撑。

关键词: 水力压裂 , 切顶卸压 , 离散元法 , 裂隙扩展 , 损伤区, 颗粒运移 , 厚硬顶板

Abstract:

The study investigates the temporal and spatial evolution patterns of hydraulic fractures in rock during the hydraulic fracturing process for roof stress relief in coal mines. By employing the discrete element method, a model for hydraulic fracture propagation and particle displacement was constructed to analyze the responses of fracture quantity and morphology, particle displacement, and damage zone area to variations in water pressure, cohesion, porosity, and Young's modulus. The results show that an increase in water pressure causes the fractures to transition from linear to complex mesh or branched forms, providing more channels for particle displacement and increasing the damage zone area. However, excessive water pressure may induce compaction effects, reducing the effectiveness of fracture channels and inhibiting further damage zone expansion. An increase in cohesion makes fracture propagation more regular, with particle displacement transitioning from disordered to ordered. Porosity influences the complexity of fracture propagation and the amplitude of particle displacement, while an increase in Young's modulus results in more concentrated fracture paths and enhanced directional particle displacement. The temporal evolution of fractures can be divided into the initiation stage, micro-crack propagation stage, and rapid crack propagation stage. The temporal evolution curves of hydraulic fractures under different variables follow an exponential distribution. This study provides a theoretical basis for optimizing hydraulic fracturing construction processes and offers guidance for improving roof stress relief efficiency.

中图分类号: