煤炭工程 ›› 2023, Vol. 55 ›› Issue (10): 162-166.doi: 10. 11799/ ce202310027

• 研究探讨 • 上一篇    下一篇

基于BP神经网络的智能配煤方法研究

熊树宝,李季,石建光,叶干,寇炜,银海龙   

  1. 1. 国能包头能源有限责任公司 煤炭洗选分公司, 内蒙古 鄂尔多斯 017000
    2. 中煤科工集团北京华宇工程有限公司, 北京 100120
    3. 鄂尔多斯市能源局, 内蒙古 鄂尔多斯 017000

  • 收稿日期:2022-11-04 修回日期:2023-10-08 出版日期:2023-10-20 发布日期:2025-04-08
  • 通讯作者: 李季 E-mail:18701508430@163.com

  • Received:2022-11-04 Revised:2023-10-08 Online:2023-10-20 Published:2025-04-08

摘要:

由于煤质的波动, 配煤是一个在不确定条件下的优化问题。针对目前铁路快速定量装车系统给煤模式单一, 配煤精度低, 配煤速度慢的问题, 提出了一种基于BP神经网络的快速定量配煤方法, 通过构建BP神经网络结构、选择合适的激活函数, 得到优化的配煤模型。研究结果表明, 该方法在加快配煤速度的同时提高了配煤精度, 有效提高了矿山企业装快速定量装车系统的工作效率。

关键词: 智能化配煤, BP神经网络, 装车

Abstract:

The coal blending mode of the current railroad rapid quantitative loading system is simple. The coal blending accuracy is low the speed is slow. Due to the fluctuation of coal type and coal quality, coal blending is an optimization problem under uncertain conditions, which cannot be solved by a traditional linear programming model. This paper focused on the fast quantitative coal blending method based on BP neural network to model and analyzed the materials and optimize the coal blending mode. The effects of the BP neural network and the number of hidden layer nodes on the prediction result were analyzed. Based on the traditional fixed dosage mode, the neural network was introduced into the dosage control algorithm, and the fast quantitative intelligent control method based on BP neural network was established to optimize the dosage control process, which improved the coal blending accuracy while accelerating the speed of dosage and coal, and effectively improved the efficiency of loading system in mining enterprises.

中图分类号: