煤炭工程 ›› 2019, Vol. 51 ›› Issue (10): 113-117.doi: 10.11799/ce20191025

• 研究探讨 • 上一篇    

基于BP神经网络的煤自燃温度预测研究

昝军才,魏成才,蒋可娟,吴雨欣,袁超   

  1. 陕西彬长矿业集团有限公司小庄矿业公司
  • 收稿日期:2018-07-24 修回日期:2019-01-28 出版日期:2019-10-21 发布日期:2020-05-09
  • 通讯作者: 昝军才 E-mail:986094043@qq.com

Prediction of coal spontaneous combustion temperature based on BP neural network

  • Received:2018-07-24 Revised:2019-01-28 Online:2019-10-21 Published:2020-05-09

摘要: 为了研究煤在氧化升温过程中CO、CO2、CH4、C2H6、C2H4等气体对温度的反馈作用,并通过各气体的数据准确预测煤自燃的温度。以赵楼煤矿为背景,采集部分煤样,放入煤自然发火实验炉中,通过数控程序系统,模拟煤自然发火时的漏风强度和供氧量,收集指标气体和温度等相关数据。采用气体成分分析法和神经网络算法建立BP神经网络预测模型,选取CO、CO2、CH4、C2H6、C2H4气体浓度作为神经网络的输入层,煤温作为输出层,设置8个隐含层神经元对煤自燃情况进行预测。结果表明:经过训练后,预测温度与实际温度基本吻合,误差控制在0~0.00065,该预测模型的建立对于矿井煤自燃早期预报有着极其重要的指导意义。

关键词: BP神经网络, 煤自燃, 温度预测, 早期预报

Abstract: As the time change ,coal in the process of oxidation temperature will desorption to produce CO, CO2, CH4, C2H6, C2H4, and other gas. For a long time ,coal spontaneous combustion prediction only considers the internal factors and external factors ,and has not yet to consider a self-heating effect on coal spontaneous combustion feedback. Based on zhao lou coal mine as the background, use gas component analysis and neural network algorithm to establish the BP neural network prediction model, select CO, CO2, CH4, C2H6, C2H4 gas concentration as neural network input layer, the coal temperature as output layer, set up eight hidden layer neurons in the forecast of coal spontaneous combustion. The result shows that after training, the predicted temperature and real temperature error control between 0 to 0.00065. The establishment of the prediction model for coal mine spontaneous combustion has an important guiding significance.