煤炭工程 ›› 2023, Vol. 55 ›› Issue (11): 148-153.doi: 10. 11799/ ce202311025

• 研究探讨 • 上一篇    下一篇

基于深度学习的煤矿钢丝绳缺损检测方法研究

刘晓磊,吴国群,阚哲   

  1. 1. 晋能控股煤业集团, 山西 大同 036000
    2. 中煤科工集团沈阳研究院有限公司, 辽宁 沈阳 113112
    3. 辽宁石油化工大学 信息控制工程学院, 辽宁 抚顺 113001

  • 收稿日期:2023-02-20 修回日期:2023-05-24 出版日期:2023-11-20 发布日期:2025-04-07
  • 通讯作者: 刘晓磊 E-mail:choosebank@163.com

Research on defect detection method of coal mine wire rope based on deep learning

  • Received:2023-02-20 Revised:2023-05-24 Online:2023-11-20 Published:2025-04-07

摘要:

为了解决煤矿用钢丝绳缺损在线实时检测问题, 进一步提高矿用钢丝绳缺损检测的灵活性及准确度, 开展了图像法矿用钢丝绳缺损检测的研究。利用摄像机对钢丝绳入井前段采样, 提出一种基于YOLO v5的物体表面小缺陷检测模型, 实现了钢丝绳外部小缺陷的精准检测。引入迁移学习方法, 进一步提升了小样本训练的模型精度。经过大量实验表明, 在钢丝绳缺损检测中, 该模型的平均正确率及准确率均值较修改前有明显提升, 且能够保证检测速度保持在实时水平。

关键词: 钢丝绳, 深度学习, 缺损检测, 图像, 检测精度

Abstract:

Wire rope is an indispensable production machinery in coal mines. It is the main force-bearing equipment of the underground traction system. Accurate detection of wire rope defects and positions plays an extremely important role in safe production. The existing defect detection solutions have some deficiencies in the flexibility, accuracy and real-time performance of wire rope defect detection. In order to solve the above problems, this paper uses the camera to sample the wire rope before the well entry, and proposes an object based on YOLO V5. The surface small defect detection model realizes the accurate detection of small defects outside the wire rope. The transfer learning method is also introduced to improve the model accuracy of small sample training. After a large number of experiments, it is shown that in the task of wire rope defect detection, the average correctness rate and the average accuracy rate of the model are significantly improved compared with those before the modification, and the detection speed can be maintained at a real-time level.

中图分类号: