煤炭工程 ›› 2024, Vol. 56 ›› Issue (12): 115-124.doi: 10.11799/ce202412018

• 研究探讨 • 上一篇    下一篇

基于深度学习的煤巷掘进工作面瓦斯涌出量预测研究

李鹏,辛诗雨,闫凡壮,等   

  1. 1. 神华神东煤炭集团有限责任公司
    2. 中国矿业大学(北京)
  • 收稿日期:2024-02-23 修回日期:2024-05-14 出版日期:2024-12-20 发布日期:2025-01-08
  • 通讯作者: 辛诗雨 E-mail:245135162@qq.com

Deep Learning-based Prediction of Gas Outflow from Coal Tunnel Cutting Face

  • Received:2024-02-23 Revised:2024-05-14 Online:2024-12-20 Published:2025-01-08

摘要: 研究煤巷掘进工作面瓦斯涌出量,对于煤巷掘进工作面瓦斯防治具有重要意义。利用深度学习理论与长短期记忆神经网络高效处理时间序列样本的特性,建立基于LSTM神经网络的煤巷掘进工作面瓦斯涌出量预测模型,依据训练过程中损失值的大小对模型超参数进行优化,选择并确定模型的最优超参数,借助煤巷掘进工作面瓦斯涌出量原始数据,验证模型的适用性和准确性,并根据预测结果分析工作面瓦斯涌出量在时间维度上的变化趋势。研究结果对预测煤巷掘进工作面瓦斯涌出变化趋势、判别工作面瓦斯异常涌出、提升掘进工作面瓦斯治理水平具有参考意义。

关键词: 瓦斯涌出量, 煤巷掘进工作面, 深度学习, LSTM神经网络, 预测模型

Abstract: The study of gas outflow from coal tunnel working face is of great significance for the prevention and control of gas in coal tunnel working face. Using the characteristics of deep learning theory and long and short-term memory neural network to process the time series samples efficiently, a prediction model of gas outflow prediction model based on LSTM neural network is established. The hyperparameters of the model are optimised according to the size of the loss value in the training process, and the optimal hyperparameters of the model are selected and determined. With the help of the original data of gas outflow from the coal mine face, the applicability and accuracy of the model are verified, and the variation trend of gas emission in time dimension is analyzed according to the predicted results. The results of the study are of reference significance for predicting the trend of gas outflow in coal mine face, identifying abnormal gas outflow in the face, and improving the level of gas control in the face.

中图分类号: