煤炭工程 ›› 2024, Vol. 56 ›› Issue (4): 218-224.doi: 10. 11799/ ce202404033

• 装备技术 • 上一篇    

基于改进SFS算法的锚杆钻臂参数整定研究

陶磊,陈岳,王宏伟,李超,姚林虎   

  1. 1. 太原理工大学 机械与运载工程学院,山西 太原 030024
    2. 太原理工大学 山西省煤矿智能装备工程研究中心,山西 太原 030024

  • 收稿日期:2023-06-07 修回日期:2023-08-07 出版日期:2023-04-20 发布日期:2024-12-09
  • 通讯作者: 陈岳 E-mail:cy18767870206@163.com

Research on parameter setting of anchor drill arm based on improved SFS algorithm

  • Received:2023-06-07 Revised:2023-08-07 Online:2023-04-20 Published:2024-12-09
  • Contact: 岳 陈 E-mail:cy18767870206@163.com

摘要:

针对锚杆钻臂井下自动控制过程中存在的环境恶劣、地质复杂等特殊工况,需着重考虑PID的参数选取,为此采用随机分形搜索算法(SFS)对PID参数进行整定。由于随机分形搜索算法存在局部搜索能力不足、易陷入局部最优等问题,在面对机械臂待整定参数多及参数间耦合严重时,其整定效果不佳。因此,引入混沌初始化、正余弦策略、自适应K值选取策略以提高算法的局部搜索能力以及全局搜索速度;采用柯西、差分定向变异策略使算法跳出局部最优。通过标准测试函数测试表明改进后的随机分形搜索算法收敛速度及精度均有一定提高。最后通过锚杆钻臂参数整定仿真实验表明:改进后随机分形搜索算法整定的PID参数总体适应度值提高21%;各关节的量化指标表示改进后随机分形搜索算法跳出了局部最优,提高了整体寻优精度与速度。

关键词: 锚杆钻臂 , 参数整定 , 随机分形搜索算法 , PID控制

Abstract:

For the special working conditions such as harsh environment and complex geology in the downhole automatic control process of the anchor drilling arm, it is necessary to consider the parameter selection of PID, and for this reason, the stochastic fractal search algorithm (SFS) is used for the adjustment of the PID parameters. Due to the problems of insufficient local search capability and easy to fall into local optimization, the random fractal search algorithm is ineffective in the face of many parameters to be calibrated and serious coupling between parameters of the robotic arm. Therefore, chaotic initialization, positive cosine strategy, and adaptive K value selection strategy are introduced to improve the local search ability and global search speed of the algorithm; Cauchy and differential directional variation strategies are adopted to make the algorithm jump out of the local optimum. The standard test function test shows that the improved stochastic fractal search algorithm has improved the convergence speed and accuracy. Finally, through the simulation experiment of anchor drilling arm parameter adjustment, it is shown that: the overall adaptability value of the PID parameters adjusted by the improved stochastic fractal search algorithm is increased by 21%; and the quantitative indexes of the joints indicate that the improved stochastic fractal search algorithm jumps out of the local optimum, and improves the overall searching accuracy and speed.optimal and improves the overall optimization accuracy and speed.

中图分类号: