[1]章程,陈雨婷,彭耀丽,等.黄药体系中气泡与不同粗糙度黄铜矿表面碰撞黏附机理研究[J].金属矿山,2024,(04):127-134.ZHANG Cheng, CHEN Yuting, PENG Yaoli, et al. Study on Collision and Adhesion Mechanism between Bubbles and Chalcopyrite Surface with Different Roughness in Xanthate Solution System[J].Metal Mine,2024,(04):127-134.[2]朱张磊,印万忠,李振,等.表面粗糙度对水滴在方解石表面黏附的影响[J].矿产保护与利用,2022,42(01):8-14.ZHU Zhanglei, YIN Wanzhong, LI Zhen, et al. Investigation on the Effect of SurfaceRoughness on the Adhesion of Water Drop lets on Calcite Surface[J]. Conservation and Utilization of Mineral Resources,2022,42(01):8-14.[3]赵亮,ZHOU Joe,张志军,等.表面粗糙度对浮选气泡-颗粒相互作用的影响机理研究进展(英文)[J].Journal of Central South University,2023,30(09):3021-3043. ZHAO Liang, ZHOU Joe, ZHANG Zhijun, et al. Fundamental role of surface roughness in bubble-particle interaction in flotation: A review[J]. Journal of Central South University,2023,30(09):3021-3043.[4]卜祥宁,童正,孙玉金,等.矿物表面粗糙度对颗粒–气泡相互作用影响的研究进展[J].煤炭学报,2023,48(11):4171-4182.BU Xiangning, TONG Zheng, SUN Yujin, et al. Research progress on the impact of mineral surface roughness on particle-bubble interaction[J]. Journal of China Coal Society,2023,48(11):4171-4182.[5]赵旭,印万忠,姚金,等.油酸钠体系下粗糙度对白云石可浮性的影响及其机理[J].东北大学学报(自然科学版),2023,44(08):1188-1194.ZHAO Xu, YIN Wanzhong, YAO Jin, et al. Effect of Roughness on Floatability of Dolomite in Sodium Oleate System and Its Mechanism[J]. Journal of Northeastern University(Natural Science),2023,44(08):1188-1194.[6]江宁,孙玉金,董宪姝,等.调控矿物表面粗糙度强化纳米粒子捕收性[J/OL].矿产综合利用,1-7[2024-07-16].JIANG Ning, SUN Yujin, DONG Xianshu, et al. Enhancing the Collection of Nanoparticles by Regulating the Surface Roughness of Minerals[J/OL]. Multipurpose Utilization of Mineral Resources,1-7[2024-07-16].[7]熊鹏,董宪姝,叶贵川,等.粗糙度对贫瘦煤表面润湿性的影响[J].煤炭工程,2024,56(03):197-204.XIONG Peng, DONG Xianshu, YE Guichuan, et al. Effect of roughness on the wettability of lean coal surfaces[J].Coal Engineering,2024,56(03):197-204.[8]Sun Y, Jiang Y, Choi C H, et al. Direct measurements of adhesion forces of water droplets on smooth and patterned polymers[J]. Surface Innovations, 2017, 6(1–2): 93-105.[9]Sun Y, Bu X, Ulusoy U, et al. Effect of surface roughness onparticle-bubble interaction: A critical review[J]. Minerals Engineering, 2023, 201: 108223.[10]LEACH R. Fundamental principles of engineering nanometrology[M]. Amsterdam: Elsevier Inc, 2014: 62-66.[11] 李伯奎, 刘远伟.表面粗糙度理论发展研究[J].工具技术, 2004(01): 63-67.LI Bokui, LIU Yuanwei. Study of Developing Tendency of Surface Roughness[J].Tool Engineering, 2004(01): 63-67.[12]覃奇贤, 刘波兰. 表面粗糙度[J].电镀与精饰, 2009,31(6): 32-34.TAN Qixian,LIU Bolan.Surface Roughness[J].Plating and Finishing, 2009,31(6): 32-34.[13] JIANG X, SCOTT P J, WHITEHOUSE D J, et al. Paradigm shifts in surface metrology. part II. the current shift[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2007,463(2085): 2071-2099.[14]何宝凤,丁思源,魏翠娥,等.三维表面粗糙度测量方法综述[J].光学精密工程,2019,27(01):78-93.HE Baofeng, DING Siyuan, WEI Cuie, et al. Review of measurement methods for areal surface roughness[J].Optics and Precision Engineering,2019,27(01):78-93.[15] LEACH R. Optical measurement of surface topography[M]. Germany: Springer Berlin Heidelberg, 2011: 62-66.[16] 何宝凤, 魏翠娥, 刘柄显, 等. 三维表面粗糙度的表征和应用[J].光学精密工程, 2018,26(8):1994-2011.HE Baofeng, WEI Cuie, LIU Bingxian, et al. Three-dimensional surface roughness characterization and application[J].Optics and Precision Engineering, 2018,26(8):1994-2011.[17]朱祥山.表面粗糙度测量技术与方法研究[J].中国设备工程,2019,(23):216-217.ZHU Xiangshan. Research on Surface Roughness Measurement Techniques and Methods[J].China Plant Engineering,2019,(23):216-217.[18] VORBURGER T V, RHEE H G, RENEGAR T B, et al. Comparison of optical and stylus methods for measurement of surface texture[J]. The International Journal of Advanced Manufacturing Technology, 2007,33(1-2): 110-118.[19] 刘金超, 崔洁. 原子力显微镜的工作原理及其在电化学原位测试中的应用[J]. 材料导报, 2022,36(14): 195-205.LIU Jinchao, CUI Jie. Atomic Force Microscopy: Principles and Applications in the Field of In-situ Electro-chemical Characterization[J]. Materials Reports, 2022,36(14): 195-205.[20] 李成贵, 董申. 3D表面粗糙度的测量方法分析[J]. 航空精密制造技术, 1999(02): 36-40.LI Chenggui, DONG Shen. Analysis of Measurement Methods for 3D Surface Roughness[J]. Aviation Precision Manufacturing Technology, 1999(02): 36-40.[21] MATHIA T G, PAWLUS P, WIECZOROWSKI M. Recent trends in surface metrology[J]. Wear, 2010,271(3): 494-508.[22] WANG X C, ZHANG Q. Insight into the influence of surface roughness on the wettability of apatite and dolomite[J]. Minerals, 2020,10(2): 114.[23] WANG X C, ZHANG Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite[J]. Powder Technology, 2020,371: 55-63.[24] WANG S W, FAN H D, HE H, et al. Effect of particle shape and roughness on the hydrophobicity of low-rank coal surface[J]. International Journal of Coal Preparation and Utilization, 2020, 40(12): 876-891.[25] UYSAL T, GUVEN O, OZDEMIR O, et al. Contribution of particle morphology on flotation and aggregation of sphalerite particles[J]. Minerals Engineering, 2021,165: 106860.[26] RAHIMI M, DEHGHANI F, REZAI B, et al. Influence of the roughness and shape of quartz particles on their flotation kinetics[J]. International Journal of Minerals, Metallurgy, and Materials, 2012,19: 284-289.[27] FENG D, ALDRICH C. A comparison of the flotation of ore from the merensky reef after wet and dry grinding[J]. International Journal of Mineral Processing,2000,60(2): 115-129.[28] TONG Z Y, LIU L, YUAN Z T, et al. The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J]. Minerals Engineering, 2021,169: 106959.[29] GUVEN O, OZDEMIR O, KARAAGACLIOGLU I E, et al. Surface morphologies and floatability of sand-blasted quartz particles[J]. Minerals Engineering, 2015,70: 1-7.[30]Hassas B V, Caliskan H, Guven O, et al. Effect of roughness and shape factor on flotation characteristics of glass beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 492: 88-99.[31]Xing Y, Zhang Y, Ding S, et al. Effect of surface roughness on the detachment between bubble and glass beads with different contact angles[J]. Powder Technology, 2020, 361: 812-816.[32] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical transactions of the royal society of London, 1805(95): 65-87.[33] SHIBUICHI S, ONDA T, SATOH N, et al. Super water-repellent surfaces resulting from fractal structure[J]. The Journal of Physical Chemistry, 1996,100(50): 19512-19517.[34] ULUSOY U, YEKELER M. Correlation of the surface roughness of some industrial minerals with their wettability parameters[J]. Chemical Engineering and Processing: Process Intensification, 2005,44(5): 555-563.[35] CHEN Y R, XIA W C, XIE G Y. Contact angle and induction time of air bubble on flat coal surface of different roughness[J]. Fuel, 2018,222: 35-41.[36] KRASOWSKA M, TERPILOWSKI K, CHIBOWSKI E, et al. Apparent contact angles and time of the three phase contact formation by the bubble colliding with teflon surfaces of different roughness[J]. Physicochem. Probl. Miner. Process, 2006,40: 293-306.[37] Veeramasuneni S, Drelich J, Miller J D, et al. Hydrophobicity of ion-plated PTFE coatings[J]. Progress in Organic Coatings, 1997, 31(3): 265-270.[38] HASSAS B V, CALISKAN H, GUVEN O, et al. Effect of roughness and shape factor on flotation characteristics of glass beads[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,492: 88-99.[39] XIA W C. Role of surface roughness in the attachment time between air bubble and flat ultra-low-ash coal surface[J]. International Journal of Mineral Processing, 2017,168: 19-24.[40] GUNGOREN C, OZDEMIR O, WANG X, et al. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system[J]. Ultrasonics Sonochemistry, 2019,52: 446-454.[41] WANG X C, ZHANG Q. Insight into the influence of surface roughness on the wettability of apatite and dolomite[J]. Minerals, 2020,10(2): 114.[42] WANG X C, ZHANG Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite[J]. Powder technology, 2020,371: 55-63.[43] TONG Z Y, LIU L, YUAN Z T, et al. The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J]. Minerals Engineering, 2021,169: 106959.[44] XIA W C, LI Y F. Role of roughness change on wettability of taixi anthracite coal surface before and after the heating process[J]. Energy & Fuels, 2016,30(1): 281-284.[45] LI M, XING Y W, ZHU C Y, et al. Effect of roughness on wettability and floatability: Based on wetting film drainage between bubbles and solid surfaces[J]. International Journal of Mining Science and Technology, 2022,32(06): 1389-1396.[46]Busscher H J, Van Pelt A W J, De Boer P, et al. The effect of surface roughening of polymers on measured contact angles of liquids[J]. Colloids and surfaces, 1984, 9(4): 319-331.[47] UYSAL T, GUVEN O, OZDEMIR O, et al. Contribution of particle morphology on flotation and aggregation of sphalerite particles[J]. Minerals Engineering, 2021,165: 106860.[48] DANG-VU T, HUPKA J, DRZYMALA J. Impact of roughness on hydrophobicity of particles measured by the washburn method[J]. Physicochemical Problems of Mineral Processing, 2006,40: 45-52.[49] XIA W C, NI C, XIE G Y. The influence of surface roughness on wettability of natural/gold-coated ultra-low ash coal particles[J]. Powder Technology, 2016,288: 286-290.[50] ZHENG R J, GAO H M, QIAN Y P. Flotation behavior of different colored fluorites using calcite as a collector[J]. Minerals, 2017,7(9): 159.[51] GUVEN O, KARAKAS F, KODRAZI N, et al. Dependence of morphology on anionic flotation of alumina[J]. International Journal of Mineral Processing, 2016,156: 69-74.[52] ZHU Z L, YIN W Z, WANG D H, et al. The role of surface roughness in the wettability and floatability of quartz particles[J]. Applied Surface Science, 2020,527: 146799.[53] ZHU Z L, FU Y F, YIN W Z, et al. Role of surface roughness in the magnesite flotation and its mechanism[J]. Particuology, 2022,62: 63-70.[54] ZHU Z L, WANG D H, YANG B, et al. Water droplets and air bubbles at magnesite nano-rough surfaces: Analysis of induction time, adhesion and detachment using a dynamic microbalance[J]. Minerals Engineering, 2020,155: 106449.[55] ZHU C Y, LI G S, XING Y W, et al. Adhesion forces for water/oil droplet and bubble on coking coal surfaces with different roughness[J]. International Journal of Mining Science and Technology, 2021,31(4): 681-687.[56] ZHU Z L, LI Z, YIN W Z, et al. Snap-in interactions between water droplets and hematite/quartz surfaces with various roughness after conditioning with soluble starch and DDA using a dynamic microbalance[J]. Minerals Engineering, 2022,177: 107358.[57] ZHU Z L, LI Z, YIN W Z, et al. Effect of surface roughness on the flotation separation of hematite from fine quartz[J]. Journal of Industrial and Engineering Chemistry, 2022,109: 431-441.[58] KRASOWSKA M, MALYSA K. Wetting films in attachment of the colliding bubble[J]. Advances in Colloid and Interface Science, 2007,134: 138-150.[59] KRASOWSKA M, ZAWALA J, MALYSA K. Air at hydrophobic surfaces and kinetics of three phase contact formation[J]. Advances in Colloid and Interface Science, 2008,147: 155-169.[60] WANG D H, ZHU Z L, YANG B, et al. Nano-scaled roughness effect on air bubble-hydrophilic surface adhesive strength[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020,603: 125228.[61] WANG S W, GUO J F, TANG L F, et al. Effect of surface roughness of chinese sub-bituminous coal on the kinetics of three-phase contact formation[J]. Fuel, 2018,216: 531-537.[62] XING Y W, ZHANG Y F, DING S H, et al. Effect of surface roughness on the detachment between bubble and glass beads with different contact angles[J]. Powder Technology, 2020,361(C): 812-816.[63] XING Y W, ZHANG Y, LIU M, et al. Improving the floatability of coal with varying surface roughness through hypobaric treatment[J]. Powder Technology, 2019,345: 643-648.[64] DRELICH, J., CHIBOWSKI, et al. Hydrophilic and superhydrophilic surfaces and materials[J]. Soft matter, 2011,7(21): 9804-9828.[65] GUVEN O, CELIK M S, DRELICH J W. Flotation of methylated roughened glass particles and analysis of particle-bubble energy barrier[J]. Minerals Engineering, 2015,79: 125-132.[66] DRELICH J W. A simplified analysis of the effect of nano-asperities on particle-bubble interactions[J]. Physicochemcial problems of mineral processing, 2018,54(1): 10-18.[67] DRELICH J W, BOWEN P K. Hydrophobic nano-asperities in control of energy barrier during particle-surface interactions[J]. Surface innovatios, 2015,3(3): 164-171.[68] ULUSOY U, YEKELER M, HI?Y?LMAZ C. Determination of the shape, morphological and wettability properties of quartz and their correlations[J]. Minerals Engineering, 2003,16(10): 951-964.[69] HICYILMA C, ULUSOY U, BILGE S, et al. Flotation responses to the morphological properties of particles measured with three-dimensional approach[J]. International Journal of Mineral Processing, 2004,75(3-4): 229-236.[70] GUVEN O, ?ELIK M S. Interplay of particle shape and surface roughness to reach maximum flotation efficiencies depending on collector concentration[J]. Mineral Processing and Extractive Metallurgy Review, 2016,37(6): 412-417.[71] NIU C K, XIA W C, XIE G Y. Effect of low-temperature pyrolysis on surface properties of sub-bituminous coal sample and its relationship to flotation response[J]. Fuel, 2017,208: 469-475.[72] MAHMOUD M A. Effect of comminution on particle shape and surface roughness and their relation to flotation process[J]. International Journal of Mineral Processing, 2010,94(3-4): 180-191.[73] ZHU Z L, WANG D H, YANG B, et al. Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions[J]. Minerals Engineering, 2020,151(C): 106340.[74] GUVEN O. The effect of shape and roughness on flotation and aggregation of quartz particles[J]. Physicochemical Problems of Mineral Processing, 2022,58(6): 2-10.[75] YIN W, ZHU Z, YANG B, et al. Contribution of particle shape and surface roughness on the flotation behavior of low-ash coking coal[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019,41(5): 636-644.[76] SURESH L, WALZ J Y. Effect of surface roughness on the Interaction energy between a colloidal sphere and a flat plate[J]. Journal of Colloid and Interface Science, 1996,183(1): 199-21 |