[1]张金华,张梦媛,陈艳鹏,等. 煤炭地下气化现场试验进展与启示[J]. 煤炭科学技术,2022,50(02):213-222.ZHANG J.H., ZHANG M.Y., CHEN Y.P., et al., Progresses and revelation of underground coal gasification field test [J]. Coal Science and Technology,2022,50(02):213-222. [2]韩军,方惠军,喻岳钰,等.煤炭地下气化产业与技术发展的主要问题及对策[J].石油科技论坛,2020,39(03):50-59.HAN J., FANG H.J., YU Y.Y. et al., Main problems and countermeasures of underground coal gasification industrial and technological development, Forum of Petroleum Science and Technology, 2020,39(3):50-59.[3]刘淑琴,师素珍,冯国旭,等.煤炭地下气化地质选址原则与案例评价[J].煤炭学报,2019,44(8):2531-2538Liu S. Q., SHI S.Z., FENG, G.X. et al. Geological site selection and evaluation for underground coal gasification[J].Journal of China Coal Society,2019,44(8):2531-2538.[4]曾志伟,来鹏,田继军,等.吐哈煤田艾丁湖一区煤炭地下气化地质评价体系[J].煤田地质与勘探,2024,52(11):24-36.ZENG Z. W.,LAI P.,TIAN J. J.,et al. Underground coal gasification in the Aidinghu mining area, Turpan-Hami coalfield: Geological evaluation system and the selection of the optimal coal seam[J]. Coal Geology & Exploration,2024,52(11):24?36.[5]周泽,易同生,秦勇,等.贵州无井式UCG选址选层“四性”地质评价模式与资源类型划分[J].煤炭学报,2024,49(05):2414-2425.ZHOU Z.,YI T. S.,QIN Y.,et al. “ Four properties ” geological evaluation model and resource type classification of non-well type UCG site and layer selection in Guizhou Province[J]. Journal of China Coal Society,2024,49(5):2414?2425.[6]东振,陈艳鹏,孔令峰,等.煤炭地下气化试验综述与产业化发展建议[J].煤田地质与勘探,2024,52(02):180-196.DONG Z.,CHEN Y.P.,KONG L.F.,et al. Underground coal gasification: Overview of field tests and suggestions for industrialization[J]. Coal Geology & Exploration,2024,52(2):180?196. [7]王兴刚,范谭广,焦立新,等.三塘湖盆地煤炭地下气化地质评价与有利区域[J].新疆石油地质,2023,44(03):307-313.WANG X. G., FAN T. G., JIAO L. X., et al.Geological Evaluation and Favorable Areas of Underground Coal Gasification in Santanghu Basin[J].XINJIANG PETROLEUM GEOLOGY,2023,44(03):307-313.[8]秦勇,易同生,杨磊,等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探,2023,51(7):17?25. QIN Y., YI T.S., YANG Lei, et al. Underground coal gasification field tests in China: History and prospects[J].Coal Geology & Exploration,2023,51(7):17?25. [9]郝丽萍,郭祥光,马建坡,等.煤炭地下气化煤系地层含水性识别及含水量预测测井评价方法[J].中国煤炭,2022,48(07):27-33. HAO L.P., GUO X.G., MA J.P., et al.Research on logging evaluation method for water content identification and water content prediction of coal measure strata for underground coal gasification[J]. China Coal,2022,48(07):27-33.[10]王凡,谌伦建,徐冰,等. 煤炭地下气化污染地下水的迁移与渗透反应墙净化数值模拟研究[J]. 煤炭学报,2023,48(4):1697?1706. WANG F.,CHEN L. J.,XU B.,et al. Numerical simulation on the migration and permeable reaction barrier purification of groundwater contaminated by UCG[J]. Journal of China Coal Society, 2023, 48(4):1697?1706.[11]Levine, J.R., 1993. Coalification: the evolution of coal as source rock and reservoir rock for oil and gas. In: Hydrocarbons from coal, Law B E. and Rice D D. (eds), AAPG Studies in Geology#38: 39-77. [12]秦勇,王作棠,韩磊.煤炭地下气化中的地质问题[J].煤炭学报,2019,44(8):2516-2530.QIN Y.,WANG,Z.T.,HAN, L. Geological problems in underground coal gasification[J].Journal of China Coal Society,2019,44(8):2516-2530.[13]康永尚,陈晶,张兵,等. 沁水盆地寿阳勘探区煤层气井排采水源层判识[J]. 煤炭学报,2016,41(9):2263-2272. Kang Yongshang, Chen Jing, Zhang Bing, et al. Identification of aquifers influencing the drainage of coalbed methane wells in Shouyang exploration area, Qinshui Basin[J]. Journal of China Coal Society,2016,41(9): 2263-2272. [14]陆银龙,王连国,唐芙蓉,等.煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J].煤炭学报,2012,37(08):1292-1298.LU Y.L., WANG L.G., TANG F.R., et al. Fracture evolution of overlying strata over combustion cavity under thermal-mechanical interaction during underground coal gasification[J]. Journal of China Coal Society, 2012, 37(08): 1292-1298.[15]刘淑琴,周蓉,潘佳,等.煤炭地下气化选址决策及地下水污染防控[J].煤炭科学技术,2013,41(05):23-27+62.LIU S.Q.,ZHOU R.,PAN J., et al., Location selection and groundwater pollution prevention&control regarding underground coal gasification[J]. Coal Science and Technology, 2013, 41(05): 23-27+62.[16]刘淑琴,张尚军,牛茂斐,等.煤炭地下气化技术及其应用前景[J].地学前缘,2016,23(03):97-102.LIU S.Q., ZHANG S.J., NIU M.F, et al. Technology process and application prospect of underground coal gasification[J]. Earth Science Frontiers, 2016, 23(03): 97-102.[17]VYAS D U,SINGH R P.Worldwide developments in UCG and Indian initiative[J].Procedia Earth and Planetary Science,2015,11:29-37.[18]NIEC M,SERMET E,CHECKO J. Evaluation of coal resources for underground gasification in Poland: Selection of possible UCG sites[J]. Fuel,2017,208:193-202.[19]Bielowicz B., Kasiński J. R., The possibility of underground gasification of lignite from Polish deposits. International Journal of Coal Geology, 2014. 131: 304-318.[20]张风达,申宝宏.深部煤层底板破坏特征分析[J].采矿与安全工程学报,2019,36(01):44-50.ZHANG F.D, SHEN B.H.. Failure characteristics analysis of deep coal seam floor[J]. Journal of Mining & Safety Engineering, 2019, 36(01): 44-50.[21]徐智敏,刘栓栓,陈天赐,等.煤层底板水文地质结构划分及阻隔水能力定量评价方法研究[J].煤炭科学技术,2022,50(02):187-194.XU Z.M., LIU S.S., CHEN T.C., et al. Study on evaluation method of hydrogeological structure and water-barrier capacity of coal seam floor[J]. Coal Science and Technology,2022,50(02):187-194.[22]李昂,谷拴成,陈方方.带压开采煤层底板破坏深度理论分析及数值模拟——以陕西澄合矿区董家河煤矿5号煤层为例[J].煤田地质与勘探,2013,41(04):56-60.LI A., GU S.C., CHEN F.F.. Theoretical analysis and numerical simulation of destroyed depth of coal seam floor during bearing mining: with seam No.5 in Dongjiahe mine, Chenghe mining area, Shaanxi as example[J]. Coal Geology & Exploration, 2013, 41(04): 56-60.[23]刘伟韬,王东辉,穆殿瑞.深部承压水上开采煤层底板破坏特征[J].辽宁工程技术大学学报(自然科学版),2017,36(09):920-926.LIU Weitao, WANG Donghui, MU Dianrui. Failure characteristics of coal seam floor in deep confined water[J]. Journal of Liaoning Technical University(Natural Science), 2017, 36(9): 920-926.[24]孟召平,郝海金,张典坤,等.晋城成庄井田煤层气直井开发后煤层底板突水危险性评价[J].煤炭学报,2014,39(09):1899-1906.MENG Z.P., Hao H.J., Zhang D.K., et al. Assessment of water inrush risk of coal floor after CBM development using vertical wells at Chengzhuang mine field in Jincheng[J]. Journal of China Coal Society, 2014, 39(9): 1899-1906.[25]翟晓荣,吴基文,张红梅,等.基于流固耦合的深部煤层采动底板突水机理研究[J]. 煤炭科学技术, 2017, 45(6): 170-175. ZHAI X.R., WU J.W., ZHANG H.M., et al. Study on water-inrush mechanism of mining floor of deep coal seam in mine shaft based on fluid-solid coupling[J]. Coal Science and Technology, 2017, 45(6): 170-175. |