[1]王诚龙, 刘万里, 张学亮, 等.基于探地雷达的工作面异常体精准探测技术[J].岩土力学, 2022, 43(11):3198-3208
[2]Wang Chenglong, Liu Wanli, Zhang Xueliang, et al.Accurate detection technology of abnormal body in front of working face based on ground penetrating radar[J].Rock and Soil Mechanics, 2022, 43(11):3198-3208
[3]胡荣明, 武建强, 姚燕子, 等.探地雷达在煤层异常体探测中的应用[J].煤炭工程, 2023, 55(10):136-142
[4]Hu Rongming, Wu Jianqiang, Yao Yanzi, et al.Application of ground penetrating radar in coal seam anomaly detection[J].Coal Engineering, 2023, 55(10):136-142
[5]崔凡, 王然, 陈存强, 等.滇东复杂地质条件探地雷达与井下地震综合超前预测小构造[J].煤炭科学技术, 2023, 51(S1):222-230
[6]Cui Fan, Wang Ran, Chen Cunqiang, et al.Integrated advanced prediction of small structures by ground penetrating radar and downhole seismic with complex geological conditions in East Yunnan[J].Coal Science And Technology, 2023, 51(S1):222-230
[7]孙胜利, 杨定超.探地雷达在煤矿巷道掘进探测岩溶中的应用[J].矿业安全与环保, 2010, 37(03):79-80
[8]Sun Shengli, Yang Dingchao.Determination of Outburst Sensitivity Index and Critical Value of Outburst Seams in Shoushan Application of Ground Probing Radar in Karst Detection during Roadway Excavation in Coal Mine[J].Mining Safety&Environmental Protection, 2010, 37(03):79-80
[9]刘传孝.探地雷达空洞探测机理研究及应用实例分析[J].[J].岩石力学与工程学报, 2000, (02):238-241
[10]Liu Chuanxiao.Research on the mechanism of probing cavity with ground penetrating radar and analysis on application examples[J]. Chinese Journal Of Rock Mechanics And Engineering, 2000, (02): 238-241.
[11]刘万里, 马修泽, 张学亮.基于探地雷达的特厚煤层厚度动态探测技术[J].煤炭学报, 2021, 46(08):2706-2714
[12]Liu Wanli, Ma Xiuze, Zhang Xueliang.Dynamic detection technology of extra-thick coal seam thickness based on ground penetrating radar[J].Journal of China Coal Society, 2021, 46(08):2706-2714
[13]杨秀宇, 刘帅, 刘清, 等.智能化综放工作面顶煤厚度探测方法[J].工矿自动化, 2021, 47(06):79-83
[14]Yang Xiuyu, Liu Shuai, Liu Qing, et al.Top coal thickness detection method for intelligent fully-mechanized working face[J].Journal of Mine Automation, 2021, 47(06):79-83
[15]苗曙光, 刘晓文, 李淮江, 等.基于探地雷达的煤岩界面探测数据解释方法[J].工矿自动化, 2019, 45(01):35-39
[16]Miao Shuguang, Liu xiaowen, Li Huaijiang, et al.Data interpretation method of coal-rock interface detection based on ground penetrating radar[J].Journal of Mine Automation, 2019, 45(01):35-39
[17]李亮, 王昕, 胡克想, 等.探地雷达探测煤岩界面的方法与试验[J].工矿自动化, 2015, 41(09):8-11
[18]Li Liang, Wang Xin, Hu Kexiang, et al.Coal-rock interface detection method using ground penetrating radar and its experiment[J].Journal of Mine Automation, 2015, 41(09):8-11
[19]许献磊, 彭苏萍, 马正, 等.基于空气耦合雷达的矿井煤岩界面随采动态探测原理及关键技术[J].煤炭学报, 2022, 47(08):2961-2977
[20]Xu Xianlei, Peng Suping, Ma Zheng, et al.Principle and key technology of dynamic detection of coal-rock interface in coal mine based on air-coupled radar[J].Journal of China Coal Society, 2022, 47(08):2961-2977
[21]许献磊, 王一丹, 朱鹏桥, 等.基于高频雷达波的煤岩层位识别与追踪方法研究[J].煤炭科学技术, 2022, 50(07):50-58
[22]Xu Xianlei, Wang Yidan, Zhu Pengqiao, et al.Research on coal and rock horizon identification and tracking method based on high frequency radar waves[J].Coal Science And Technology, 2022, 50(07):50-58
[23]Barakat R.Rayleigh wavefront criterion[J].Josa, 1965, 55(5):572-573
[24]Tamburini F, Anzolin G, Umbriaco G, et al.Overcoming the Rayleigh criterion limit with optical vortices[J].Physical review letters, 2006, 97(16):163903-
[25]Dell’Acqua A, Sarti A, Tubaro S, et al.Detection of linear objects in GPR data[J], SignalProcessing, 2004, 84:785-799.
[26]WINDSOR C G, CAPINERI L, FALORNI P.A data pair-labeled generalized Hough transform for radar location of buried objects[J].IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):124-127
[27]VIOLA P, JONES M J.Robust real-time face detection[J].International Journal of Computer Vision, 2004, 57(2):137-154
[28]BORGIOLI G, CAPINERI L, FALORNI P, et al.The detection of buried pipes from time-of-flight radar data[J].IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8):2254-2266
[29]MAAS C, SCHMALZL J.Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar[J]. Computers & Geosciences, 2013, 58: 116–125.
[30]BESAW L E, STIMAC P J.Deep convolutional neural networks for classifying GPR B-Scans[J]. SPIE, 2015, 9454: 945413.
[31]BRALICH J, REICHMAN D, COLLINS L M, et al.Improving convolutional neural networks for buried target detection in ground penetrating radar using transfer learning via pretraining[J]. SPIE, 2017: 10182.
[32]BESAW L E.Detecting buried explosive hazards with handheld GPR and deep learning[J]. SPIE, 2016, 9823: 98230N.
[33]Arcone S A, Lawson D E, Delaney A J, et al.Ground-penetratinng radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost[J].Geophysics, 1998, 63(5):1573-1584
[34]Xia J, Franseen E K, Miller R D, et al.Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution[J].Journal of applied geophysics, 2003, 54(1-2):15-33
[35]Chahine K, Baltazart V, Dérobert X, et al.Blind deconvolution via independent component analysis for thin-pavement thickness estimation using GPR[C]//2009 International Radar Conference" Surveillance for a Safer World" (RADAR 2009). IEEE, 2009: 1-5.
[36]Schmelzbach C, Huber E.Efficient deconvolution of ground-penetrating radar data[J].IEEE transactions on geoscience and remote sensing, 2015, 53(9):5209-5217 |