[1] 高旭霞, 郭晓镭, 龚欣. 气流床煤气化渣的特征[J]. 华东理工大学学报(自然科学版), 2009, 35(05):677-683. [2] 范宁, 张逸群, 樊盼盼, 等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术, 2022, 28(08):145-154. [3] 赵炜. 水煤浆气化渣对风沙土改良效果与作物生长响应研究[D]. 内蒙古农业大学, 2021. [4] Luo F, Jiang Y, Wei C. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material - ScienceDirect[J]. Construction and Building Materials,?2021, 269: 121259. [5] Zhang Y, Wang R, Qiu G, et al. Synthesis of Porous Material from Coal Gasification Fine Slag Residual Carbon and Its Application in Removal of Methylene Blue[J]. Molecules (Basel, Switzerland), 2021, 26(20):6116. [6] Yin C, Zhao J, Liu X, et al. Effect of Coal Water Slurry Gasification Slag on Soil Water Physical Characteristics and Properties in Saline-Alkali Soil Improvement[J]. Journal of Sensors, 2022(2022). [7] 力国民, 侯如愿, 毛璐涛, 等. 利用煤气化残渣构建Fe3O4和Fe负载的碳基复合吸波材料[J]. 燃料化学学报(中英文), 2023, 51(04):562-570. [8] Zhao B, Zhao W, Shao G, et al. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Transactions, 2015, 44(36): 15984-15993. [9] 孔静, 高鸿, 李岩, 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9):9055-9063.[10] 王伟成, 吴昊, 王兴军, 等. 水煤浆气化过程中元素的迁移与富集特性[J]. 化工进展, 2023.[11] Zhou X, Jia Z, Feng A, et al. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2019, 152: 827-836.[12] Li J, Jin song, Lu W, et al. Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J]. Carbon An International Journal Sponsored by the American Carbon Society, 2018, 129:76-84.[13] 孔静, 高鸿, 李岩, 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(09):9055-9063.[14] Wen B, Cao M, Lu M, et al. Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures[J]. Advanced Materials, 2014, 26(21):3484-3489.[15] Xiang Z, Huang C, Song Y, et al. Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2020, 167(1):364-377.[16] Wang F, Wang N, Han X, et al. Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption[J]. Carbon, 2019, 145:701-711.[17] Wu G, Cheng Y, Yang Z, et al. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior[J]. Chemical Engineering Journal, 2018, 333:519-528.[18] Li X, Zhang B, Ju C, et al. Morphology-Controlled Synthesis and Electromagnetic Properties of Porous Fe3O4 Nanostructures from Iron Alkoxide Precursors[J]. Journal of Physical Chemistry C, 2011, 115(25):12350-12357.[19] Hou T, Jia Z, Feng A, et al. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity[J]. Journal of Materials Science & Technology, 2021, 68:61-69. |