煤炭工程 ›› 2018, Vol. 50 ›› Issue (9): 124-127.doi:

• 研究探讨 • 上一篇    下一篇

煤矿井下探测作业机器人轨迹粒子群规划方法研究

梁玉柱1,梅益2,杨幸雨3,罗宁康2   

  1. 1. 贵州盘江精煤股份有限公司
    2. 贵州省贵阳市花溪区贵州大学机械工程学院
    3.
  • 收稿日期:2018-03-28 修回日期:2018-05-25 出版日期:2018-09-20 发布日期:2018-12-18
  • 通讯作者: 梅益 E-mail:mei_yi@163.com

Under the restriction of limited space mechanical arm obstacle avoidance path particle swarm planning method research

  • Received:2018-03-28 Revised:2018-05-25 Online:2018-09-20 Published:2018-12-18

摘要: 针对煤矿井下非结构化、不确定和复杂的未知环境作业轨迹规划问题,提出了一种基于粒子群算法的机器人轨迹规划与优化方法。建立机器人动力学模型,通过将机器人运动学约束转化为三次样条插值曲线的控制关键点约束的非线性约束优化问题,利用三次多项式插值拟合曲线,通过粒子群算法和惩罚函数法相结合,采用自适应函数控制插值收敛速度,得到一条满足实际工况要求的最优时间轨迹。研究结果表明,该方法有效地解决了煤矿井下复杂环境的机器人时间最优轨迹优化问题。

关键词: 煤矿复杂环境, 机器人, 轨迹规划, 粒子群算法

Abstract: A path planning and optimization method based on particle swarm optimization (PSO) is proposed for trajectory planning of unstructured, uncertain and complex unknown environment in coal mine. The establishment of dynamic model of robot, the key point control of robot kinematics constraints into three spline interpolation curve constraint nonlinear constrained optimization problem, using three order polynomial interpolation curve by combining particle swarm algorithm and penalty function method, using adaptive interpolation function to control convergence speed, get a satisfying real time optimal trajectory the requirements of working condition. The results show that this method has effectively solved the optimization of robot time optimal trajectory in the complex environment of coal mine.

中图分类号: