煤炭工程 ›› 2021, Vol. 53 ›› Issue (3): 185-189.doi: 10.11799/ce202103036

• 工程管理 • 上一篇    下一篇

基于RNN的煤矿安全隐患信息关键语义智能提取系统#br#
#br#

陈梓华1,鲍永生2,李敬兆1   

  1. 1. 安徽理工大学
    2. 大同煤矿集团有限责任公司
  • 收稿日期:2019-11-26 修回日期:2020-03-24 出版日期:2021-03-20 发布日期:2021-05-10
  • 通讯作者: 李敬兆 E-mail:jzhli@aust.edu.cn

Key Semantic Intelligent Extraction System for Coal Mine Safety Hazard Information Based on RNN

  • Received:2019-11-26 Revised:2020-03-24 Online:2021-03-20 Published:2021-05-10

摘要: 针对现有煤矿安全隐患信息采集系统语义特征提取效率不高、数据采集智能化程度低等问题,提出了一种基于改进循环神经网络(RNN)的煤矿安全隐患信息关键语义智能提取系统。该系统利用循环神经网络记忆过往认知的特点,构建基于RNN的煤矿安全隐患信息关键语义智能采集模型,以逗号为界限进行语句分割,逐句提取关键语义特征,积累过往提取特征的记忆,最终获取安全隐患特征关键词。实验结果表明:该系统具有高精准度特征提取,语义映射命中率高等特性,实现了煤矿安全隐患关键信息智能采集,提高了日常安全生产隐患排查效率,减少了煤矿安全事故的发生。

关键词: 安全隐患, 特征提取, 语义分析, 循环神经网络, 数据映射

Abstract: Aiming at the problems of low efficiency of semantic feature extraction and low intelligence of data collection in the information collection system of coal mine safety hazard information, this paper proposes a key semantic intelligence extraction based on improved Recurrent Neural Network (RNN) for coal mine safety hazard information system. The characteristics of the past cognition for the recurrent neural network is applied to construct the key semantic intelligent collection model of coal mine safety hazard information based on RNN. The sentence is segmented with comma as the boundary, the key semantic features are extracted step by step, and the memory of the past feature extraction is accumulated and get security risk feature keywords. The experimental results show that the system has high-precision feature extraction and semantic mapping hit rate, which realizes intelligent collection of key information of coal mine safety hazards, improves the efficiency of daily safety production hazard investigation, and reduces the occurrence of coal mine safety accidents.