[1]WANG Xu, SHEN Changqing, XIA Min, et al.Multi-scale deep intra-class transfer learning for bearing fault diagnosis[J].Reliability Engineering and System Safety, 2020, 202(107050):1-15[2]LEI Yaguo, QIAO Zijian, XU Xuefang, et al.An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings[J].Mechanical Systems and Signal Processing, 2017, 94(SEP.):148-164[3] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A, 1998, 454(1971):903-993[4]DRAGOMIRETSKIY K, ZOSSO D.Variational Mode Decomposition[J].IEEE Transactions on Signal Processing, 2014, 62(3):531-544[5]唐贵基,王晓龙.参数优化变分模态分解方法在轴承早期故障诊断中的应用[J].西安交通大学学报, 2015, 49(5):73-81[6]马增强,李亚超,刘政,等.基于变分模态分解和能量算子的滚动轴承故障特征提取[J].振动与冲击, 2016, 35(13):134-139[7]任学平,李攀,王朝阁,等.基于改进与包络导数能量算子的滚动轴承早期故障诊断[J].振动与冲击, 2018, 37(15):6-13[8]王奉涛,柳晨曦,张涛,等.基于值优化的滚动轴承故障诊断方法[J].振动、测试与诊断, 2018, 38(3):540-547[9]何勇,王红,谷穗.一种基于遗传算法的参数优化轴承故障诊断新方法[J].振动与冲击, 2021, 40(6):184-189[10]LIM J S, MALIK N A.A new algorithm for two-dimensional maximum entropy power spectrum estimation[J].IEEE Transactions on Acoustics, Speech, and Signal Processing, 2003, 29(3):401-413[11] FEI Chengwei, BAI Guangchen, TANG Wenzhong, et al.Quantitative diagnosis of rotor vibration fault using process power spectrum entropy and support vector machine method[J].Shock and Vibration, 2014, 2014(10):269-278[12] Lessmeier C, Kimotho J K, Zimmer D, et al.Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification[C]// European Conference of the Prognostics and Health Management Society. 2016.[13] SMITH W A, RANDALL R B.Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J].Mechanical Systems and Signal Processing, 2015, 64(65):100-131 |