| [1]窦林名,周坤友,宋士康,等.煤矿冲击矿压机理、监测预警及防控技术研究[J].工程地质学报,2021,29(04):917-932.DOI:10.13544/j.cnki.jeg.2021-0337.Dou Linming, ZHOU Kunyou, Song Shikang, et al. Research on mechanism, Monitoring and Early warning and Prevention and control technology of Mine Burst [J]. Journal of Engineering Geology, 2021,29(04):917-932.DOI:10.13544/j.cnki.jeg.2021-0337.[2]赵毅鑫,杨志良,马斌杰,等.基于深度学习的大采高工作面矿压预测分析及模型泛化[J].煤炭学报,2020,45(01):54-65.DOI:10.13225/j.cnki.jccs.YG19.0903.Zhao Yixin, Yang Zhiliang, Ma Binjie, et al. Mining Pressure prediction analysis and Model generalization of large mining height Working face Based on deep Learning [J]. Journal of China Coal Society,2020,45(01):54-65.DOI:10.13225/j.cnki.jccs.YG19.0903.[3]刘世明.冲击矿压形成的机理分析及防治研究[J].黑龙江科技信息,2012(13):82.Liu Shiming. Mechanism analysis and prevention of rock burst formation [J]. Heilongjiang Science and Technology Information,2012(13):82.[4]王志杰.采煤工作面顶板压力及采动压力传播范围预测[J].山东煤炭科技,2007(06):55-56+58.Wang Zhijie. Prediction of roof pressure and mining pressure propagation range in coal mining face [J]. Shandong Coal Science and Technology,2007(06):55-56+58.[5]施龙青,史雅迪,李越.矿山压力控制理论的采场顶板初始突水量预测模型[J].山东煤炭科技,2020(10):176-178+181+184.Shi Longqing, Shi Yadi, Li Yue. Prediction model of initial Water burst in stope roof based on mine Pressure Control Theory [J]. Shandong Coal Science and Technology, 2020(10):176-178+181+184.[6]罗香玉,刘俊豹,罗颖骁,解盘石,伍永平.基于时空关联分析的采煤工作面顶板压力预测方法[J].工矿自动化,2022,48(01):85-90+97.DOI:10.13272/j.issn.1671-251x.2021100012.Luo Xiangyu, Liu Junbao, Luo Yingxiao, Xie Panshi, Wu Yongping. Prediction method of roof pressure in coal mining face based on Spatio-temporal Correlation Analysis [J]. Industrial and Mining Automation, 2022,48(01):85-90+97.DOI:10.13272/j.issn.1671-251x.2021100012.[7]彭林军,宋振骐,张东峰,周光华.综放采场顶板透水压力异常规律预测及控制研究[J].矿业安全与环保,2014,41(03):57-60.Peng Lin-jun, Song Zhen-Qi, ZHANG Dong-feng, ZHOU Guang-hua. Research on Prediction and Control of Abnormal Law of Roof Seepage Pressure in Fully mechanized Caving Stope [J]. Mining Safety and Environmental Protection, 2014,41(03):57-60.[8]关联合.矿井重大危险源监测识别及预测预警系统开发[J].矿业安全与环保,2014,41(03):43-46+50.Guan Lianhe. Development of monitoring and Identification and prediction and early warning system for mine major hazard sources [J]. Mining Safety and Environmental Protection, 2014,41(03):43-46+50.[9] 尹希文,徐刚 ,刘前进,等.基于支架载荷的矿压双周期分析预测方法[J].煤炭学报,2021,46( 10) : 3116- 3126. YIN Xiwen,XU Gang,LIU Qianjin,et al.Method of double-cycle analysis and prediction for rock pressure based on the support load[J].Journal of China Coal Society,2021,46( 10) : 3116-3126.[10] 董凤鸣.数据库技术与灰色系统理论在液压支架压力预警中的应用[J].中国科技信息,2021(24):101-102.Dong Fengming. Application of Database Technology and Grey System Theory in Pressure Warning of Hydraulic Support [J]. China Science and Technology Information,2021(24):101-102.[11] 庞义辉.液压支架支护状态感知与数据处理技术[J].工矿自动化,2021,47(11):66-73. PANG Yihui. Support state perception and data processing technology of hydraulic support[J]. Industry and Mine Automation,2021, 47(11):66-73.[12] 曾庆田,吕珍珍,石永奎,等.基于 Prophet+LSTM 模型的煤矿井下工作面矿压预测研究[J].煤炭科学技术, 2021,49( 7) : 16-23.[13] 贺超峰,华心祝,杨科,马菁花.基于BP神经网络的工作面周期来压预测[J].安徽理工大学学报(自然科学版),2012,32(01):59-63.[14]金晓航,王宇,ZHANG Bin.工业大数据驱动的故障预测与健康管理[J].计算机集成制造系统,2022,28(05):1314-1336.DOI:10.13196/j.cims.2022.05.005.Jin Xiaohang, Wang Yu,ZHANG Bin. Industrial Big data-driven Fault prediction and health Management [J]. Computer Integrated Manufacturing Systems,2022,28(05):1314-1336.DOI:10.13196/j.cims.2022.05.005.[15] 余琼芳,牛冬阳.基于LSTM网络的矿山压力时空混合预测[J/OL].电子科技:1-7[2022-06-08].DOI:10.16180/j.cnki.issn1007-7820.2023.02.010.Yu Qiongfang, Niu Dongyang. Spatio-temporal Mixed prediction of mine pressure based on LSTM Network [J/OL]. Electronic Science and Technology:1-7[2022-06-08].DOI:10.16180/j.cnki.issn1007-7820.2023.02.010.[16] 尹春雷,魏文艳,何勇华,等.基于大数据分析与线性回归模型的工作面顶板压力研究[J].自动化应用,2021(5):46-50. YIN Chunlei,WEI Wenyan,HE Yonghua,et al. Research on roof pressure of working face based on Big data analysis and linear regression model[J]. Automation Application, 2021(5):46-50. [17]王琛,王颖,郑涛,等.基于ResNet-LSTM网络和注意力机制的综合能源系统多元负荷预测[J].电工技术学报,2022,37(07):1789-1799.DOI:10.19595/j.cnki.1000-6753.tces.210212.Wang Chen, Wang Ying, Zheng Tao, et al. Multivariate Load Prediction of integrated energy System based on RESNET-LSTM Network and Attention Mechanism [J]. Transactions of Electrotechnical Society, 2022,37(07):1789-1799.DOI:10.19595/j.cnki.1000-6753.tces.210212.[18]魏健,赵红涛,刘敦楠,等.基于注意力机制的CNN-LSTM短期电力负荷预测方法[J].华北电力大学学报(自然科学版),2021,48(01):42-47.Wei Jian, Zhao Hongtao, Liu Dunnan, et al. Short-term Power Load Forecasting method based on ATTENTION Mechanism of CNN-LSTM [J]. Journal of North China Electric Power University (Natural Science Edition), 201,48(01):42-47. |