| [1].张凌智, 代伟, 马小平. 重介质选煤过程先进控制:研究进展及展望[J]. 工矿自动化, 2020, 46(08): 21-27, 69. ZHANG Lingzhi, DAI Wei, MA Xiaoping, Advanced control of dense medium coal separation process: research progresses and prospects[J]. Industry and Mine Automation, 2020, 46(08): 21-27+69. [2].CAI Zongyan, XU Yuanbo, DUAN Zhishan. An alternative demodulation method using envelope-derivative operator for bearing fault diagnosis of the vibrating screen [J]. Journal of Vibration and Control. 2018;24(15):3249-3261.[3].LIU Yue, SUO Shuangfu,, MENG Guoying, et.al. A Theoretical Rigid Body Model of Vibrating Screen for Spring Failure Diagnosis[J]. Mathematics, 2019, 7. 246. https://doi.org/10.3390/math7030246.[4].GUO Wenhao, CHENG Jinjun, TAN Yangbo, LIU Qiang. Solenoid Valve Fault Diagnosis Based on Genetic Optimization MKSVM[C]. IOP Conference Series Earth and Environmental Science, 2018, 170.[5].PAVLO K, RADOSLAW Z, et.al. Development and Verification of the Diagnostic Model of the Sieving Screen[J]. Shock and Vibration, 2020, 2020(2):1-14.[6].ANNA M,JACEK W, et.al. Model of the Vibration Signal of the Vibrating Sieving Screen Suspension for Condition Monitoring Purposes[J]. Sensors, 2020, 21(1):213.[7].蔡艳平, 李艾华, 石林锁等. 基于EMD与谱峭度的滚动轴承故障检测改进包络谱分析[J]. 振动与冲击, 2011, 30(02): 167-172+191.CAI Yanping, LI Aihua, SHI Linsuo, et al. Roller bearing fault detection using improved envelope spectrum analysis based on EMD and spectrum kurtosis [J]. Journal of Vibration and shock, 2011, 30(02):167-172+191.[8].范伟, 何越宙, 王寅, 陈华. 基于VMD-RQA的直线振动筛激振力不平衡故障诊断[J]. 振动与冲击, 2021,40(18): 25-32.FAN Wei, HE Yuezhou, WANG Yin, CHEN Hua. Early unbalance fault diagnosis on the exciting force of a linear vibrating screen based on VMD-RQA[J]. Journal of Vibration and Shock, 2021,40(18): 25-32.[9].徐元博, 蔡宗琰. 改进FastICA算法在振动筛复合故障诊断中的应用[J]. 工况自动化, 2017,43(5):79-82.XU Yuanbo, CAI Zongyan. Application of improved FastICA algorithm in compound fault diagnosis of vibrating screen[J]. Industry and Mine Automation, 2017,43(5):79-82.[10].CHEN Bingsan, HUANG Dicheng, ZHANG Fujiang. The Modeling Method of a Vibrating Screen Efficiency Prediction Based on KPCA and LS-SVM[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(7):1950009.1-1950009.21.[11].CHEN Guangzhu, ZHANG Lei, BAO Jiusheng. An Improved Negative Selection Algorithm and Its Application in the Fault Diagnosis of Vibrating Screen by Wireless Sensor Networks[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(10):2418-2416.[12].陈海聪. 直线振动筛减振弹簧疲劳失效故障的分析与研究[D]. 无锡: 江南大学机械工程学院, 2022, 51-55.CHEN Haicong. Analysis and Research on Fatigue Failure of Damping Spring of Linear Vibrating Screen[D]. Wuxi: School of Mechanical Engineering Jiangnan University, 2022:51-55.[13].苏旭. 振动筛健康状态监测方法研究[D]. 泉州: 华侨大学机电及自动化学院, 2020: 68-74.SU Xu. Research on Health Condition Monitoring Method of Vibrating Screen[D]. Quanzhou: College of Mechanical Engineering and Automation, HQU, 2020: 68-74.[14].陈华. 直线振动筛在线故障诊断方法研究及系统开发[D]. 泉州: 华侨大学机电及自动化学院, 2021: 70-74.CHEN Hua. Research on Online Fault Diagnosis Method and System Development of Linear Vibrating Screen[D]. Quanzhou: College of Mechanical Engineering and Automation, HQU, 2021: 70-74.[15].秦太龙, 时建峰, 程珩. BP神经网络在振动筛故障诊断中的应用[J]. 煤矿机电, 2008(02): 42-43+46.QIN Tailong, SHI Jianfeng, CHENG Heng. Application of BP Neural Network to Fault Diagnosis of Vibrating Sieve[J]. Colliery Mechanical & Electrical Technology, 2008(02): 42-43+46.[16].徐晓滨. 不确定性信息处理得随机集方法及在系统可靠性评估与故障诊断中的应用[D]. 上海: 上海海事大学物流工程学院, 2009: 16.XU Xiaobin. Stochastic set method for uncertain information processing and its application in system reliability evaluation and fault diagnosis[D]. Shanghai: Logistics Engineering College, Shanghai Maritime University, 2009:16.[17].ZHAO Nanyang, Mao Zhiwei, Wei Donghai, et al. Fault Diagnosis of Diesel Engine Valve Clearance Based on Variational Mode Decomposition and Random Forest[J]. Applied Sciences, 2020, 10(3):1124.[18].HAN Long, LI Chengwei, LIU Hongchen. Feature Extraction Method of Rolling Bearing Fault Signal Based on EEMD and Cloud Model Characteristic Entropy[J]. Entropy, 2015, 17(10): 6683-6697 [19].DAI Wei, LI Depeng, ZHOU Ping, et al. Stochastic configuration networks with block increments for data modeling in process industries[J]. Information Sciences, 2019, 484: 367-386.[20].WANG Dianhui, LI Ming. Stochastic Configuration Networks: Fundamentals and Algorithms [J]. IEEE Transactions on Industrial Informatics, 2017, 47(10): 3466-3479.[21].李德毅, 杜鹢. 不确定性人工智能[M].北京: 国防工业出版社. 2005: 68-72.LI Deyi, DU Yi. Artificial Intelligence with Uncertainty [M]. Beijing: National Defense Industry Press. 2005: 68-72.[22].刘常昱, 冯芒, 戴晓军, 李德毅. 基于云X信息的逆向云新算法[J]. 系统仿真学报, 2004, 16(11): 2417-2420.LIU Changyu, FENG Mang, DAI Xiaojun, LI Deyi. A New Algorithm of Backward Cloud [J]. Journal of system simulation, 2004, 16(11): 2417-2420.[23].林海明, 杜子芳. 主成分分析综合评价应该注意的问题[J]. 统计研究, 2013, 30(08): 25-31.LIN Haiming, DU Zifang. Some Problems in Comprehensive Evaluation in the Principal Component Analysis[J].Statistical Research, 2013, 30(08): 25-31.[24].DAI W ZHOU X, LI D, et al. Hybrid Parallel Stochastic Configuration Networks for Industrial Data Analytics[J]. IEEE Transactions on Industrial Informatics, 2021, 18(3): 2331-2341.[25].阎高伟, 龚杏雄, 李国勇. 基于振动信号和云推理的球磨机负荷软测量[J].控制与决策, 2014,29(06):1109-1114.YAN Gaowei, GONG Xinxiong, LI Guoyong. Soft sensor for ball mill fill level based on vibration signal and cloud model reasoning[J]. Control and Decision, 2014, 29(06): 1109-1114[26].胡爱军, 马万里, 唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报, 2012,32(11): 106-111+153.HU Aijun, MA Wanli, TANG Guiji. Rolling Bearing Fault Feature Extraction Method Based on Ensemble Empirical Mode Decomposition and Kurtosis Criterion [J], Proceedings of the CSEE, 2012,32(11): 106-111+153.[27].王聪. 基于低偏差SCN的阀门故障诊断系统[D]. 徐州: 中国矿业大学信息与控制工程学院, 2021: 8-12.WANG Cong. Valve Fault Diagnosis System Based on Low Discrepancy SCN[D]. Xuzhou: China University of Mining and Technology, 2021: 8-12 [28].黄大荣, 柯兰艳, 林梦婷等. 一种参数优化VMD多尺度熵的轴承故障诊断新方法[J]. 控制与决策, 2020, 35(07): 1631-1638.HUANG Darong, KE Lanyan, LIN Mengting, et al. A new fault diagnosis approach for bearing based on multi-scale entropy of the optimized VMD [J]. Control and Decision, 2020, 35(07): 1631-1638. |