[1]秦波涛,马东.采空区煤自燃与瓦斯复合灾害防控研究进展及挑战[J/OL].煤炭学报,1-18[2024-04-15].[2]国家统计局.(2024).中华人民共和国2023年国民经济和社会发展统计公报-2024.https://www.stats.gov.cn/sj/zxfb/202402/t20240228_1947915.html.[3]王国法.“碳中和”不是零碳,“碳达峰”也绝不是能源达峰[J].山西煤炭,2021,41(03):1-2.[4]王国法,张德生.煤炭智能化综采技术创新实践与发展展望[J].中国矿业大学学报,2018,47(03):459-467.[5]孙慧影,林中鹏,黄灿,等.基于改进BP神经网络的矿用通风机故障诊断[J].工矿自动化,2017,43(04):37-41.[6]宋宇航,马萍,李建军,等.基于伪标签深度学习的半监督滚动轴承故障诊断模型[J].噪声与振动控制,2024,44(02):102-107+184.[7]Wang X, He Q. Machinery Fault Signal Reconstruction Using Time-Frequency Manifold[M]//Engineering Asset Management-Systems, Professional Practices and Certification. Springer, Cham, 2015: 777-787.[8]Yan R, Gao R X. Hilbert–Huang transform-based vibration signal analysis for machine health monitoring[J]. IEEE Transactions on Instrumentation and measurement, 2006, 55(6): 2320-2329.[9]Wong M L D, Jack L B, Nandi A K. Modified self-organising map for automated novelty detection applied to vibration signal monitoring[J]. Mechanical systems and signal processing, 2006, 20(3): 593-610.[10]Jung U , Koh B H .Wavelet energy-based visualization and classification of high-dimensional signal for bearing fault detection[J].Knowledge & Information Systems, 2015, 44(1):197-215.[11]Li N, Zhou R, Zhao X Z. Mechanical faulty signal denoising using a redundant non-linear second-generation wavelet transform[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(4): 799-808.[12]李志博,李媛媛,蔡寅.卷积神经网络与知识图谱结合的轴承故障诊断[J].噪声与振动控制,2024,44(02):156-163.[13]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.[14]范啸宇,刘韬,王振亚,等.嵌入NLB模块的FCN在轴承信号降噪中的应用[J].电子测量与仪器学报,2024,38(04):55-65.[15]陈博勋,王宏铭,王玲,等.基于深度学习的镜下矿物图像识别方法[J].矿业研究与开发,2022,42(11):163-170.[16]汝欣,孟金鑫,李建强,等.基于深度学习与改进极限学习机的包装机轴承故障诊断[J].软件工程,2024,27(04):43-48.[17]郭刚,汪海涛,高晓成,等.基于粗糙径向基神经网络的刮板输送机负载预测方法研究[J].煤炭工程,2024,56(02):138-145.[18]Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.[19]Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929-1958. |