| [1] 鞠建华. "双碳"目标背景下矿业发展新机遇与实现路径[J]. 中国矿业, 2022, 31(1): 1-5. (Ju Jianhua New opportunities and implementation paths for mining development under the background of the "dual carbon" goal [J] China Mining, 2022, 31 (1): 1-5)[2] 艾弯. 基于可靠性与风险评估的煤炭码头关键设备维修决策研究[D].武汉理工大学,2014: 1-2. (Aiwan Research on Maintenance Decision of Key Equipment in Coal Terminal Based on Reliability and Risk Assessment [D]. Wuhan University of Technology, 2014: 1-2.)[3] 杨清翔, 向秀华, 孟斌,等. 一种煤矿带式输送机故障诊断方法[J]. 工矿自动化, 2017(12): 48-52. (Yang Qingxiang, Xiang Xiuhua, Meng Bin, et al. A coal mine belt conveyor fault diagnosis method [J]. Industrial and Mine Automation, 2017(12): 48-52.)[4] 陈国杰, 赵维义, 朱星. 基于单片机双能γ射线透射煤矸石在线识别仪[J]. 核电子学与探测技术, 2004, 24(2): 140-142. (Chen Guojie, Zhao Weiyi, Zhu Xing. On-line recognition instrument for coal gangue based on single-chip dual-energy γ-ray transmission [J]. Nuclear Electronics and Detection Technology, 2004, 24(2): 140-142.)[5] 郜振国. 煤矿井下运输异物检测关键技术研究[D].中国矿业大学,2018: 1. (Gao Zhenguo Research on Key Technologies for Foreign Object Detection in Underground Transportation of Coal Mines [D]. China University of Mining and Technology, 2018: 1)[6] 岳有军,孙碧玉,王红君,等.基于级联卷积神经网络的番茄果实目标检测[J].科学技术与工程,2021,21(06): 2387-2391. (Yue Youjun, Sun Biyu, Wang Hongjun, et al. Tomato fruit target detection based on cascaded convolutional neural network [J]. Science and Technology and Engineering, 2021,21 (06): 2387-2391)[7] Yu L , Park E , Berg A C ,et al.Proceedings - 2015 IEEE International Conference on Computer Vision, ICCV 2015[J].IEEE, 2016.DOI:10.1109/ICCV.2015.283: 1-20.[8] Ren S , He K , Girshick R ,et al.Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[C]//NIPS.2016.DOI:10.1109/tpami.2016.2577031: 5-15.[9] Wei L , Dragomir A , Dumitru E ,et al.SSD: Single Shot MultiBox Detector[J].Springer, Cham, 2016.DOI:10.1007/978-3-319-46448-0_2: 2-18.[10] Redmon J , Divvala S , Girshick R ,et al.You Only Look Once: Unified, Real-Time Object Detection[C]//Computer Vision & Pattern Recognition.IEEE, 2016.DOI:10.1109/CVPR.2016.91: 1-20.[11] 吴守鹏, 丁恩杰, 俞啸. 基于改进FPN的输送带异物识别方法[J]. 煤矿安全, 2019, 50(12):127-130. (Wu Shoupeng, Ding Enjie, Yu Xiao. A method for identifying foreign objects in conveyor belts based on improved FPN [J]. Coal Mine Safety, 2019, 50(12): 127-130.)[12] 吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州:中国矿业大学,2020: 1-60. (Lu Zhiqiang. Research on Image Recognition of Foreign Objects in Coal Mine Belt Transportation in Complex Environment [D]. Xuzhou: China University of Mining and Technology, 2020: 1-60.)[13] Wang, Yuanbin, Yujing Wang, and Langfei Dang. "Video detection of foreign objects on the surface of belt conveyor underground coal mine based on improved SSD." Journal of Ambient Intelligence and Humanized Computing (2020): 1-10.[14] 胡璟皓, 高妍, 张红娟,等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化, 2021, 47(6): 57-62, 90. (Hu Jinghao, Gao Yan, Zhang Hongjuan, et al. Recognition method of non-coal foreign matter on belt conveyor based on deep learning [J]. Industrial and Mine Automation, 2021, 47(6): 57-62, 90.)[15] 郝帅, 张旭, 马旭,等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报, 2022, 47(11): 4147-4156. (Hao Shuai, Zhang Xu, Ma Xu, et al. Foreign matter detection in coal mine conveyor belt based on CBAM-YOLOv5 [J]. Journal of Coal Science, 2022, 47(11): 4147-4156.)[16] 张伟, 庄幸涛, 王雪力,等. DS-YOLO:一种部署在无人机终端上的小目标实时检测算法[J]. 南京邮电大学学报:自然科学版, 2021.41(1): 86-98. (Zhang Wei, Zhuang Xingtao, Wang Xueli, etc DS YOLO: A Real Time Detection Algorithm for Small Targets Deployed on Drone Terminals [J] Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 2021.41 (1): 86-98.)[17] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696 (2022): 1-15.[18] Mittal S .A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform[J].Journal of Systems Architecture, 2019.DOI:10.1016/j.sysarc.2019.01.011: 3-7.[19] Zhu X , Cheng D , Zhang Z ,et al.An Empirical Study of Spatial Attention Mechanisms in Deep Networks[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE, 2020.DOI:10.1109/ICCV.2019.00679: 1-15.[20] Hu J , Shen L , Sun G .Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2018.DOI:10.1109/CVPR.2018.00745: 1-10.[21] Li, Chao, Aojun Zhou, and Anbang Yao. "Omni-dimensional dynamic convolution." arXiv preprint arXiv:2209.07947 (2022): 3-15.[22] Queen J M .Some methods for the classification and analysis of multivariate observations[J]. 1966: 7-9.[23] 齐向明,董旭.改进Yolov7-tiny的钢材表面缺陷检测算法[J/OL].计算机工程与应用2023: 1-13. (Qi Xiangming, Dong Xu. Improving Yolov7-tiny's Steel Surface Defect Detection Algorithm [J/OL]. Computer Engineering and Applications 2023: 1-13.)[24] Chen, Jun, et al. "Effective feature fusion network in BIFPN for small object detection." 2021 IEEE international conference on image processing (ICIP). IEEE, 2021: 4-6.[25] 李庆忠, 和 刘清. "基于小波变换的低照度图像自适应增强算法." 中国激光 2 (2015):1-10. (Li Qingzhong, and Liu Qing. "Adaptive enhancement algorithm for low-light images based on wavelet transform." China Laser 2 (2015): 1-10.)[26] Vanholder, Han. "Efficient inference with tensorrt." GPU Technology Conference. Vol. 1. 2016: 2-8.[27] Kingma D, Ba J.Adam: A Method for Stochastic Optimization[J].Computer Science, 2014.DOI:10.48550/arXiv.1412.6980: 7-9. |