煤炭工程 ›› 2025, Vol. 57 ›› Issue (10): 164-171.doi: 20250010

• 研究探讨 • 上一篇    下一篇

煤矿抓举机器人图像与激光点云融合目标检测技术研究

王景阳,张世源,王连发,纪春蕾,刁秀强,俞啸   

  1. 1. 煤炭无人化开采数智技术全国重点实验室,北京 100011

    2. 中国煤矿机械装备有限责任公司,北京 100011

    3. 中煤电气有限公司,北京 101300

    4. 中国矿业大学 物联网(感知矿山)研究中心,江苏 徐州 221008

  • 收稿日期:2024-12-06 修回日期:2025-03-30 出版日期:2025-10-10 发布日期:2025-11-12
  • 通讯作者: 俞啸 E-mail:yxcumt2006@163.com

Research on the fusion target detection technology of coal mine robot image and laser point cloud

  • Received:2024-12-06 Revised:2025-03-30 Online:2025-10-10 Published:2025-11-12
  • Contact: yuxiao yuxiaoyuxiao E-mail:yxcumt2006@163.com

摘要:

为实现井下作业场景中3D目标的精准识别,围绕煤矿井下辅助作业机器人目标检测与控制系统展开研究。首先,研究基于三维激光雷达与视频图像数据的融合分析方法,实现了激光点云数据与图像数据的时空同步与位置的匹配分析。然后,设计了基于Slim-neck特征融合网络的改进YOLOv8s图像目标检测算法模型和基于PointPillars的3D点云目标检测算法模型,在保持识别精度的同时降低了模型的复杂度。在此基础上,提出了基于兰氏距离的改进DS证据理论,建立了视频图像与3D点云数据的融合目标检测模型YOPilaNet。使用KITTI数据集开展实验验证,实验结果表明,提出的YOPilaNet融合模型在Car、Pedestrian 和Cyclist目标的检测精度分别达到了92.12%、64.68%和72.71%,明显优于单一模态数据下的目标检测性能。此外,在煤矿井下辅助接管作业环境中,YOPilaNet能够精准识别管道、金属管架及管道连接部位,并在复杂工况下保持稳定的检测性能,进一步验证了其适应性和工程应用价值。

关键词:

煤矿机器人 , 计算机视觉 , 激光点云 , 3D目标检测

Abstract:

Underground coal mine auxiliary operation robot equipment can reduce labour intensity, improve safety production efficiency, by more and more researchers' attention, three-dimensional scene real-time perception and spatial target detection and positioning is the basis of accurate control and autonomous operation of underground auxiliary operation robot. The research is centred on target detection and control system for underground assisted operation robots in coal mines, firstly, it studies the fusion analysis method based on 3D LiDAR and video image data, and realises the spatial and temporal synchronization of laser point cloud data and image data, as well as the matching analysis of the position. Then, the improved YOLOv8s image target detection algorithm model based on Slim-neck feature fusion network and the 3D point cloud target detection algorithm model based on PointPillars are designed, which reduces the complexity of the model while maintaining the recognition accuracy, on the basis of which, the improved DS evidence theory based on the Lange's distance is proposed, and the fusion target detection model YOPilaNet for the video image and 3D point cloud data is established. Experimental validation is carried out using the KITTI dataset, and the experimental results show that the proposed YOPilaNet fusion model significantly outperforms the target detection performance under single modal data. Finally, combining the embedded GPU processor and real-time operating system, a cooperative control system for target detection and multi-axis robotic arm is designed for underground coal mine robots, which can meet the demand for efficient automated operation in underground handling, pipeline assistance and other application scenarios.

中图分类号: