煤炭工程 ›› 2025, Vol. 57 ›› Issue (2): 149-155.doi: 10. 11799/ ce202502021

• 研究探讨 • 上一篇    下一篇

基于MOGOA-VMD-LSSVM的轴承故障诊断方法研究

张辉,宋泓炎,范华超,等   

  1. 1. 国家能源集团新疆能源有限责任公司,新疆 乌鲁木齐 830063

    2. 中国矿业大学 机电工程学院,江苏 徐州 221008

    3. 新疆工业云大数据创新中心有限公司,新疆 乌鲁木齐 830022

  • 收稿日期:2024-04-03 修回日期:2024-06-25 出版日期:2025-02-10 发布日期:2025-04-28
  • 通讯作者: 宋泓炎 E-mail:2680693005@qq.com

Fault diagnosis of hoist main bearing based on MOGOA-VMD-LSSVM

  • Received:2024-04-03 Revised:2024-06-25 Online:2025-02-10 Published:2025-04-28
  • Contact: HongYan Song HongyanSong E-mail:2680693005@qq.com

摘要:

针对煤基活性炭生产设备轴承故障类型难以准确诊断的问题, 提出了一种多目标蝗虫优化算法(MOGOA)优化变分模态分解(VMD)与最小二乘支持向量机(LSSVM)的煤基活性炭生产设备轴承故障诊断方法。首先针对传统蝗虫优化算法(GOA)参数敏感、易于陷入局部最优的问题,引入多目标蝗虫优化算法通过引入基于排列熵与峭度倒数归一化的复合适应度函数,优化VMD的惩罚因子和分解层数。其次使用优化VMD分解提取的轴承振动信号并筛选出敏感变分模态分量(IMF)进行重构。最后通过MOGOA优化LSSVM模型形成MOGOA-LSSVM故障诊断模型。与GOA-LSSVM方法对比本研究所提方法故障诊断准确率提高了5%,运行时间缩短了9.72s,验证了该方法在故障诊断方面的优势。

关键词:

煤基活性炭设备 , 轴承 , 多目标蝗虫优化算法 , VMD , LSSVM

Abstract:

A multi-objective locust optimization algorithm (MOGOA) optimized variational mode decomposition (VMD) and least squares support vector machine (LSSVM) fault diagnosis method is proposed to address the difficulty in accu-rately diagnosing bearing faults in coal based activated carbon production equipment. Firstly, the MOGOA algorithm is introduced to optimize the penalty factor and decomposition level of VMD by introducing a composite fitness function based on permutation entropy and kurtosis reciprocal normalization. Secondly, use optimized VMD de-composition to extract bearing vibration signals and select sensitive variational mode components (IMF) for recon-struction. Finally, by optimizing the LSSVM model through MOGOA, a MOGOA-LSSVM fault diagnosis model is formed. Compared with the GOA-LSSVM method, verify the advantages of the proposed method in fault diagnosis.

中图分类号: