煤炭工程 ›› 2025, Vol. 57 ›› Issue (3): 0-0.
• 设计技术 •
蔡文斌,王江龙,张衍君,周德胜,雷旭
收稿日期:
2024-07-12
修回日期:
2024-09-07
出版日期:
2025-03-10
发布日期:
2025-05-15
通讯作者:
蔡文斌
E-mail:caiwenbin@xsyu.edu.cn
Received:
2024-07-12
Revised:
2024-09-07
Online:
2025-03-10
Published:
2025-05-15
摘要: 我国煤层气资源丰富,但地质和工程条件复杂,天然气井排采工艺技术在煤层气井中的适用性受限,特别是深部煤层气(埋深大于1000 m的煤层气资源),其排采特征与浅层煤层气存在显著差异。本文通过理论分析和现场总结,系统分析了深部煤层气储层特征、排采阶段及主控因素、排采工艺的发展方向。结果表明:① 深部煤层气特点:普遍具有储层压力温度高、地层能量充足、煤层厚度大、含气量高、游离气丰富等储层特征,同时有基质渗透率低、孔隙连通性差、有效应力大及压裂液返排率低等特征。② 排采主控因素:排水降压初期,煤粉对排采效果影响较大。见气至稳产阶段,应力敏感性显著,应减少关井次数,避免排采不连续导致的地层污染;③ 排采阶段划分及排采制度:建议深部煤层气井采用精细化、定量化的五段式或六段式的阶段划分,有利于控制井底压力平稳下降,排采制度的目的是为了延长稳产期,稳产阶段的持续时间决定最终产能;④ 排采工艺发展方向:气井全生命周期一体化排采、地质工程一体化排采机器学习与智慧排采等技术的应用。该研究可为深部煤层气井排采相关技术的研究提供一定的指导。
中图分类号:
蔡文斌 王江龙 张衍君 周德胜 雷旭. 深部煤层气排采技术现状与展望[J]. 煤炭工程, 2025, 57(3): 0-0.
[1] 门相勇, 娄 钰, 王一兵, 等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业, 2022, 42(6): 173-178.MEN Xiangyong, LOU Yu, WANG Yibing, et al. Development achievements of China's CBM industry since the 13th Five-Year Plan and suggestions [J]. Natural Gas Industry, 2022, 42(6): 173-178.[2] 自然资源部油气资源战略研究中心.煤层气资源动态评价[M].北京:地质出版社,2017.[3] 庚 勐, 陈 浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6): 64-68.GENG Meng, CHEN Hao, CHEN Yanpeng, et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology, 2018, 46(6):64-68.[4] 孙 杰, 王 佟, 赵 欣, 等. 我国煤层气地质特征与研究方向思考[J]. 中国煤炭地质, 2018, 30(6): 30-34+40.SUN Jie, WANG Tong, ZHAO Xin, et al. Pondering on CBM geological features and research trend in China [J]. Coal Geology of China, 2018, 30(6): 30-34+40.[5] 巩泽文, 刘恺德, 白 优, 等. 彬长矿区煤层气排采设备优化研究[J]. 煤炭科学技术, 2019, 47(12): 156-160.GONG Zewen, LIU Kaide, BAI You, et al. Study on optimization of coalbed methane drainage equipment in Binchang Mining Area [J]. Coal Science and Technology, 2019, 47(12): 156-160.[6] Carpenter C. Coalbed methane development in China: Challenges and Opportunities[J]. Journal of Petroleum Technology, 2018, 70(07): 67-68.[7] 郭广山, 王海侨, 刘松楠, 等. 沁水盆地古交区块煤层气水平井产能影响因素分析[J]. 中国海上油气, 2024, 36(2): 110-118.GUO Guangshan, WANG Haiqiao, LIU Songnan, et al. Analysis of factors influencing the productivity of horizontal wells in Gujiao calbed methane block of Qinshui basin[J]. China Offshore Oil and Gas, 2024, 36(2):110-118.[8] 宋丽平. 煤层气井排水釆气工艺技术研究[D]. 青岛: 中国石油大学, 2011.[9] 徐凤银, 肖芝华, 陈东, 等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术, 2019, 47(10): 205-215.XU Fengyin, XIAO Zhihua, CHEN Dong, et al. Current status and development direction of coalbed methane exploration technology in China [J]. Coal Science and Technology, 2019, 47(10): 205-215.[10] 秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136.[11] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811.QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811.[12] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305.XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283-1305.[13] 陈世达, 汤达祯, 侯伟, 等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报, 2023, 44(11): 1993-2006.CHEN Shida, TANG Dazhen, HOU Wei, et al. Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica, 2023, 44(11): 1993-2006.[14] 江同文, 熊先钺, 金亦秋. 深部煤层气地质特征与开发对策[J]. 石油学报, 2023, 44(11): 1918-1930.JIANG Tongwen, XIONG Xianyue, JIN Yiqiu. Geological characteristics and development countermeasures of deep coalbed methane [J]. Acta Petrolei Sinica, 2023, 44(11): 1918-1930.[15] 李辛子, 王运海, 姜昭琛, 等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报, 2016, 41(1): 24-31.Li Xinzi, Wang Yunhai, Jiang Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 24-31.[16] 李曙光, 王成旺, 王红娜, 等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探, 2022, 50(9): 59-67.LI Shuguang, WANG Chengwang, WANG Hongna, et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block [J]. Coal Geology & Exploration, 2022, 50(9): 59-67.[17] 马文涛, 刘印华, 吴建军, 等. 煤层气井无杆排采工艺应用与改进方向——以鄂尔多斯盆地东缘为例[J]. 煤田地质与勘探, 2022, 50(9): 22-31.MA Wentao, LIU Yinhua, WU Jianjun, et al. Application and improvement directions of rodless drainage technology in coalbed methane wells: A case study from east margin of Ordos Basin [J]. Coal Geology & Exploration, 2022, 50(9): 22-31.[18] 李仰民, 王立龙, 刘国伟, 等. 煤层气井排采过程中的储层伤害机理研究[J]. 中国煤层气, 2010, 7(6): 39-43+47.LI Yangmin, WANG Lilong, LIU Guowei, et al. Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells [J]. China Coalbed Methane, 2010, 7(6):39-43+47.[19] 范毅刚, 王乾, 夏大平, 等. 准南区块煤层气井排采阶段储层伤害及其控制[J]. 煤矿安全, 2022, 53(10): 235-242.FAN Yigang, WANG Qian, XIA Daping, et al. Coalbed methane reservoir damage and its control in the drainage stage of a block in southern Junggar Basin [J]. Safety in Coal Mines, 2022, 53(10): 235-242.[20] 何姜毅, 郑超, 张巨峰, 等. 不同类型压裂返排液对煤层气储层的伤害实验研究[J]. 煤矿安全, 2021, 52(5): 20-24+30.HE Jiangyi, ZHENG Chao, ZHANG Jufeng, et al. Experimental study on damage of different types of fracturing flow-back fluid to coalbed methane reservoir [J]. Safety in Coal Mines, 2021, 52(5): 20-24+30.[21] 王超文, 彭小龙, 贾春生, 等. 枣园区块煤层气井产能影响因素分析[J]. 油气藏评价与开发, 2016, 6(3): 67-70+77.WANG Chaowen, PENG Xiaolong, JIA Chunsheng, et al. Influential factors of productivity in coalbed methane wells of Zaoyuan block [J]. Petroleum Reservoir Evaluation and Development, 2016, 6(3): 67-70+77.[22] 马晋文, 王武学, 刘超, 等. 织金区块煤层气排采优化技术研究[J]. 煤炭技术, 2021, 40(8): 49-51.MA Jin-wen, WANG Wuxue, LIU Chao, et al. Extraction technology of drainage and mining on coalbed methane of Zhijin Block [J]. Coal Technology, 2021, 40(8): 49-51.[23] 王忠博. 煤层气井喷射泵携煤粉排水采气工艺技术研究[D]. 青岛: 中国石油大学(华东), 2023.[24] 孟文辉, 张文, 王博洋, 等. 保德区块煤粉产出特征及其影响要素剖析[J]. 油气藏评价与开发, 2023, 13(4): 441-450.MENG Wenhui, ZHANG Wen, WANG Boyang, et al. Analysis of characteristics of coal fine production and its influence factors in Baode block [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 441-450.[25] Chen Z, Liu J, Kabir A, et al. Impact of various parameters on the production of coalbed methane[J]. SPE Journal, 2013, 18(05): 910-923.[26] Clarkson C R, Behmanesh H, Chorney L. Production-data and pressure-transient analysis of horseshoe canyon coalbed-methane wells, part ii: Accounting for dynamic skin[J]. Journal of Canadian Petroleum Technology, 2013, 52(01): 41-53.[27] 杨胜来, 杨思松, 高旺来. 应力敏感及液锁对煤层气储层伤害程度实验研究[J]. 天然气工业, 2006, 26(3): 90-92.YANG Shenglai, YANG Sisong, GAO Wanglai. Experimental study of damage of stress and liquid sensitivities to coal-bed gas reservoir [J]. Natural Gas Industry, 2006, 26(3): 90-92.[28] 姚征, 曹代勇, 魏迎春, 等. 煤层气开发中煤粉防治措施综合分析研究[J]. 煤炭科学技术, 2015, 43(8): 124-128+162.Yao Zheng, Cao Daiyong, Wei Yingchun, et al. Comprehensive analysis of prevention and control measures for coal fines in coalbed methane production[J]. Coal Science and Technology, 2015, 43(8): 124-128+162.[29] 陈振宏, 王一兵, 孙平. 煤粉产出对高煤阶煤层气井产能的影响及其控制[J]. 煤炭学报, 2009, 34(2): 229-232.CHEN Zhenhong, WANG Yibing, SUN Ping. Destructive influences and effectively treatments of coal powder to high rank coalbed methane production [J]. Journal of China Coal Society,2009,34 (2) :229-232.[30] 魏迎春, 曹代勇, 袁远, 等. 韩城区块煤层气井产出煤粉特征及主控因素[J]. 煤炭学报, 2013, 38(8): 1424-1429.WEI Yingchun, CAO Daiyong, YUAN Yuan, et al. Characteristics and controlling factors of pulverized coal during coalbed methane drainage in Hancheng area [J]. Journal of China Coal Society, 2013, 38(8): 1424-1429.[31] 郭大立, 纪禄军, 赵金洲, 等. 煤层压裂裂缝三维延伸模拟及产量预测研究[J]. 应用数学和力学, 2001, 22(4): 337-344.GUO Dali, JI Lujun, ZHAO Jinzhou, et al. 3D fracture propagation simulation and production prediction in coalbed[J]. Applied Mathematics and Mechanics, 2001, 22(4): 337-344.[32] 宋云飞. 深部煤层气井排采设计基础研究[D]. 青岛: 中国石油大学(华东), 2021.[33] 曹立刚, 郭海林, 顾谦隆. 煤层气井排采过程中各排采参数间关系的探讨[J]. 中国煤田地质, 2000, 12(1): 31-35.CAO Ligang, GUO Hailin, GU Qianlong. Discussion on the relationship between the discharge parameters in the process of coalbed methane well discharge [J]. Coal Geology of China, 2000, 12(1): 31-35.[34] 王冀川. 沁南-夏店区块高阶煤层气排采方法及智能排采技术[D]. 徐州: 中国矿业大学, 2021.[35] 王兴隆, 赵益忠, 吴桐. 沁南高煤阶煤层气井排采机理与生产特征[J]. 煤田地质与勘探, 2009, 37(5): 19-22+27.WANG Xinglong, ZHAO Yizhong, WU Tong. Analysis of typical production mechanism and characteristics of coalbed methane wells for high rank coal in south Qinshui basin [J]. Coal Geology & Exploration, 2009, 37(5): 19-22+27.[36] 李梦溪, 张聪, 张绍雄, 等. 沁水盆地樊庄区块煤层气直井排采特点[J]. 中国煤层气, 2012, 9(3): 3-7.LI Mengxi, ZHANG Cong, ZHANG Shaoxiong, et al. Characteristics of production of CBM vertical well in fanzhuang block, Qinshui Basin [J]. China Coalbed Methane, 2012, 9(3): 3-7.[37] 郭大立, 贡玉军, 李曙光, 等. 煤层气排采工艺技术研究和展望[J]. 西南石油大学学报(自然科学版), 2012, 34(2): 91-98.GUO Dali, GONG Yujun, LI Shuguang, et al. Research and prospect about the CBM drainage technology [J]. Journal of Southwest Petroleum University: Science & Technology Edition,2012,34(2):91-98.[38] 彭兴平, 谢先平, 刘晓, 等. 贵州织金区块多煤层合采煤层气排采制度研究[J]. 煤炭科学技术, 2016, 44(2): 39-44.PENG Xingping, XIE Xianping, LIU Xiao, et al. Study on combined coalbed methane drainage system of multi seams in Zhijin Block, Guizhou [J]. Coal Science and Technology, 2016, 44(2):39-44.[39] 孟艳军, 汤达祯, 李治平, 等. 高煤阶煤层气井不同排采阶段渗透率动态变化特征与控制机理[J]. 油气地质与采收率, 2015, 22(2): 66-71.MENG Yanjun, TANG Dazhen, LI Zhiping, et al. Dynamic variation characteristics and mechanism of permeability in high-rank CBM wells at different drainage and production [J]. Petroleum Geology and Recovery Efficiency, 2015,22(2):66-71.[40] 宋革, 傅雪海, 葛燕燕, 等. 压力控制下高煤阶储层煤层气井排采的流体效应[J]. 煤炭科学技术, 2014, 42(8): 60-64.SONG Ge, FU Xuehai, GE Yanyan. Fluid effect during coalbed methane well drainage of high rank coal reservoir under pressure control [J]. Coal Science and Technology, 2014, 42(8): 60-64.[41] 房大志, 程泽虎, 李佳欣. 渝东南地区超深层煤层气高效压裂技术及精细排采制度研究与实践——以NY1井为例[J]. 煤田地质与勘探, 2022, 50(5): 50-56.FANG Dazhi, CHENG Zehu, LI Jiaxin. Eefficient fracturing technology and fine drainage system of ultra-deep coalbed methane in southeast Chongqing: A case study of NY1 well [J]. Coal Geology & Exploration, 2022, 50(5):50-56.[42] 饶孟余, 江舒华. 煤层气井排采技术分析[J]. 中国煤层气, 2010, 7(1): 22-25.RAO Mengyu, JIANG Shuhua. Analysis on drainage techniques of coalbed methane well [J]. China Coalbed Methane, 2010, 7(1):22-25.[43] 马雄强, 余莉珠, 王大猛, 等. 中浅层煤层气井定量化排采制度[J]. 大庆石油地质与开发, 2024, 43(2): 1-7.MA Xiongqiang, YU Lizhu, WANG Dameng, et al. Quantitative drainage system for medium and shallow coalbed methane wells [J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(2): 1-7.[44] 程泽虎, 袁航, 匡玉凤. 织金区块煤层气排采制度对产气特征的影响[J]. 中国煤层气, 2021, 18(5): 14-18.CHEN Zehu, YUAN Hang, KUANG Yufeng. Influence of CBM drainage system on gas production characteristics in Zhijin Block [J]. China Coalbed Methane, 2021, 18(5): 14-18.[45] 范耀. 彬长矿区大佛寺井田煤层气直井排采制度优化[J]. 煤炭技术, 2015, 34(11): 176-178.FAN Yao. Production systems optimization of CBM vertical well in Binchang Dafosi coalfield [J]. Coal Technology, 2015, 34(11): 176-178.[46] 王维旭, 王希友, 蒋佩, 等. 蜀南地区煤层气智能精细化排采技术及管控模式[J]. 天然气勘探与开发, 2017, 40(1): 83-87.WANG Weixu, WANG Xiyou, JIANG Pei, et al. Intelligent and fine CBM production technology and management & control mode in South Sichuan area. [J]. Natural Gas Exploration and Development, 2017, 40(1): 83-87.[47] 秦义, 李仰民, 白建梅, 等. 沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业, 2011, 31(11): 22-25+119-120.QIN Yi, LI Yangmin, BAI Jianmei, et al. Research and practice on drainage and extraction process of high coal rank coalbed methane wells in southern Qinshui Basin[J]. Natural Gas Industry, 2011, 31(11): 22-25+119-120.[48] 柳迎红, 房茂军, 廖夏. 煤层气排采阶段划分及排采制度制定[J]. 洁净煤技术, 2015, 21(3): 121-124+128.LIU Yinghong, FANG Maojun, LIAO Xia. Production stages division and drainage production system development of coalbed methane [J]. Clean Coal Technology,2015,21(3):121-124+128.[49] Sawyer W K, Paul G W, Schraufnagel R A. Development and application of a 3-D coalbed simulator[C]//PETSOC Annual Technical Meeting. PETSOC, 1990: PETSOC-90-119.[50] Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds: a new model[J]. SPE reservoir evaluation & engineering, 1998, 1(06): 539-544.[51] Gray I. Reservoir engineering in coal seams: part 1-the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(01): 28-34.[52] Mora C A, Wattenbarger R A, McKetta S. Comparison of computation methods for CBM performance[C]//PETSOC Canadian International Petroleum Conference. PETSOC, 2007: PETSOC-2007-066.[53] 赵群, 王红岩, 李景明, 等. 快速排采对低渗透煤层气井产能伤害的机理研究[J]. 山东科技大学学报(自然科学版), 2008, 27(3): 27-31.ZHAO Qun, WANG Hongyan, LI Jingming, et al. Study on mechanism of harm to CBM well capability in low permeability seam with quick drainage method [J]. Journal of Shandong University of Science and Technology, 2008, 27(3): 27-31.[54] 马雄强, 余莉珠, 王大猛, 等. 中浅层煤层气井定量化排采制度[J]. 大庆石油地质与开发, 2024, 43(2): 168-174.MA Xiongqiang, YU Lizhu, WANG Dameng, et al. Quantitative drainage system of medium-shallow coalbed methane wells [J]. Petroleum Geology & Oilfield Development in Daqing, 2024, 43(2):168-174.[55] 康永尚, 邓泽, 刘洪林. 我国煤层气井排采工作制度探讨[J]. 天然气地球科学, 2008, 19(3): 423-426.KANG Yongshang, DANG Ze, LIU Honglin. Discussion about the CBM well draining technology [J]. Natural Gas Geoscience, 2008, 19(3): 423-426.[56] 白建梅, 秦义, 石惠宁, 等. 沁水盆地煤储层应力敏感分析及工艺对策[J]. 石油钻采工艺, 2009, 31(4): 94-96.BAI Jianmei, QIN Yi, SHI Huining, et al. Analysis on stress sensitivity of coalbed methane reservoir in Qinshui Basin and strategies [J]. Oil Drilling & Production Technology, 2009, 31(4): 94-96.[57] 倪小明, 王延斌, 接铭训, 等. 煤层气井排采初期合理排采强度的确定方法[J]. 西南石油大学学报: 自然科学版, 2007, 29(6): 101-104.NI Xiaoming, WANG Yanbin, Jie Mingxun, et al. Reasonable production intensity of coalbed methane wells in initial production [J]. Journal of Southwest Petroleum University, 2007, 29(6): 101-104.[58] 张遂安. 煤层气储层模拟原理及其应用[J]. 中国煤层气, 1998, 1(1): 34-36.ZHANG Suian. Coalbed Methane reservoir simulation principles and their applications [J]. China Coalbed Methane, 1998, 1(1): 34-36.[59] 於俊杰, 朱玲, 周波, 等. 中国煤层气开发利用现状及发展建议[J]. 洁净煤技术, 2009, 15(3): 5-8.YU Junjie, ZHU Ling, ZHOU Bo, et al. Current situation of coalbed methane development and utilization in China and suggestions for its development [J]. Clean Coal Technology, 2009, 15(3): 5-8.[60] 房茂军, 柳迎红, 杨凯雷, 等. 沁南盆地煤层气U型水平井部署优化研究[J]. 洁净煤技术, 2014, 20(3): 103-105+108.FANG Maojun, LIU Yinghong, YANG Kailei, et al. Optimization of U-shaped CBM horizontal wells in Qinnan Basin [J]. Clean Coal Technology, 2014, 20(3):103-105,108.[61] 周际永, 伊向艺, 卢渊. 国内外排水采气工艺综述[J]. 太原理工大学学报, 2005, 36(S1): 47-48.ZHOU Jiyong, YI Xiangyi, LU Yuan. A review of domestic and international drainage gas extraction processes [J]. Journal of Taiyuan University of Technology, 2005, 36(S1): 47-48.[62] 梅永贵, 郭简, 苏雷, 等. 无杆泵排采技术在沁水煤层气田的应用[J]. 煤炭科学技术, 2016, 44(5): 64-67.MEI Yonggui, GUO Jian, SU Lei, et al. Application of rodless pump drainage technology to Qinshui Coalbed Methane Field [J]. Coal Science and Technology, 2016, 44(5): 64-67.[63] Brown D. Submersible Pump Selection for Dewatering CBM Wells[J]. Journal of Petroleum Technology, 2014, 66(03): 36-37.[64] Settari A ., Bachman R C . C, Bothwell P . Analysis of nitrogen stimulation technique in shallow Coalbed-Methane formations[J]. SPE Production & Operations, 2012, 27(02): 185-194.[65] 孔润东. 页岩气井全生命周期精细管理[J]. 中国石油和化工标准与质量, 2023, 43(16): 85-88, 94.KONG Rundong. Shale gas well life cycle fine management [J]. China Petroleum and Chemical Standard and Quality, 2023, 43(16): 85-88, 94.[66] 蒋廷学, 卞晓冰, 左罗, 等. 非常规油气藏体积压裂全生命周期地质工程一体化技术[J]. 油气藏评价与开发, 2021, 11(3): 297-304, 339.JIANG Tingxue, BIAN Xiaobing, ZUO Luo, et al. Whole lifecycle geology-engineering integration of volumetric fracturing technology in unconventional reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3):297-304.[67] 李进步, 崔越华, 黄有根, 等. 鄂尔多斯盆地低渗-致密气藏水平井全生命周期开发技术及展望[J]. 石油与天然气地质, 2023, 44(2): 480-494.LI Progress, CUI Yuehua, HUANG Yougen, et al. Development technology and prospect of the whole life cycle of horizontal wells in low-permeability and tight gas reservoirs in Ordos Basin[J]. Oil & Gas Geology, 2023, 44(2): 480-494.[68] 李贵红, 吴信波, 刘钰辉, 等. 沁水潘庄煤层气井全生命周期产气规律与效果[J]. 煤炭学报, 2020, 45(S2): 894-903.LI Guihong,WU Xinbo,LIU Yuhui,et al.Full life-circle production and effect evaluation of Panzhuang coalbed methane wells in Qinshui Basin [J].Journal of China Coal Society, 2020, 45(S2): 894-903.[69] 方志刚, 王振松, 马斌, 等. 页岩气全生命周期气举排水采气技术研究与应用[J]. 石油科技论坛, 2022, 41(2): 45-52.FANG Zhigang, WANG Zhensong, MA Bin, et al. Research and application of life-cycle gas-lift drainage and production technology for shale gas [J]. Petroleum Science and Technology Forum, 2022, 41(2): 45-52.[70] 曾雯婷, 葛腾泽, 王倩, 等. 深层煤层气全生命周期一体化排采工艺探索——以大宁–吉县区块为例[J]. 煤田地质与勘探, 2022, 50(9): 78-85.ZENG Wenting, GE Tengze, WANG Qian, et al. Exploration of integrated technology for deep coalbed methane drainage in full life cycle: A case study of Daning-Jixian Block [J]. Coal Geology & Exploration, 2022, 50(9): 78-85.[71] 朱峰, 郭智栋, 陈世波, 等. 煤层气连续管排液采气一体化工艺研究与应用[J]. 石油机械, 2021, 49(1): 118-123.ZHU Feng, GUO Zhidong, CHEN Shibo, et al. Research and application of the integrated technology of liquid drainage and CBM production by coiled tubing [J]. China Petroleum Machinery, 2021, 49(1): 118-123.[72] 吴奇, 梁兴, 鲜成钢, 等. 地质—工程一体化高效开发中国南方海相页岩气[J]. 中国石油勘探, 2015, 20(4): 1-23.WU Qi, LIANG Xing, XIAN Chenggang, et al. Geoscience-to-production integration ensures effective and efficient South China marine shale gas development[J]. China Petroleum Exploration, 2015, 20(4): 1-23.[73] 张聪, 胡秋嘉, 冯树仁, 等. 沁水盆地南部煤层气地质工程一体化关键技术[J]. 煤矿安全, 2024, 55(2): 19-26.ZHANG Cong, HU Qiujia, FENG Shuren, et al. Key technologies for integration of coalbed methane geology and engineering in southern Qinshui Basin[J]. Safety in Coal Mines, 2024, 55(2): 19-26.[74] 田军, 刘洪涛, 滕学清, 等. 塔里木盆地克拉苏构造带超深复杂气田井全生命周期地质工程一体化实践[J]. 中国石油勘探, 2019, 24(2): 165-173.TIAN Jun, LIU Hongtao, TENG Xueqing, et al. Geology-engineering integration practices throughout well lifecycle in ultra-deep complex gas reservoirs of Kelasu tectonic belt, Tarim Basin [J]. China Petroleum Exploration, 2019, 24(2): 165-173.[75] 梁兴, 单长安, 蒋佩, 等. 浅层页岩气井全生命周期地质工程一体化应用[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 1-18.LIANG Xing, SHAN Chang′an, JIANG Pei, et al. Geology and engineering integration application in the whole life cycle of shallow shale gas wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5): 1-18.[76] 龚斌, 王虹雅, 王红娜, 等. 基于大数据分析算法的深部煤层气地质—工程一体化智能决策技术[J]. 石油学报, 2023, 44(11): 1949-1958.GONG Bin, WANG Hongya, WANG Hongna, et al. Integrated intelligent decision-making technology for deep coalbed methane geology and engineering based on big data analysis algorithms[J]. Acta Petrolei Sinica, 2023, 44(11):1949-1958.[77] 张衍君, 王鲁瑀, 刘娅菲, 等. 页岩油储层压裂–提采一体化研究进展与面临的挑战[J]. 石油钻探技术, 2024, 52(1): 84-95.ZHANG Yanjun, WANG Luyu, LIU Yafei, et al. Advances and challenges of integration of fracturing and enhanced oil recovery in shale oil reservoirs [J]. Petroleum Drilling Techniques, 2024, 52(1): 84-95.[78] Li X, Kang Y, Chen D. Effect of fracturing fluid on coalbed-methane desorption, diffusion, and seepage in the Ningwu Basin of China[J]. SPE Production & Operations, 2017, 32(02): 177-185.[79] 张宏录, 王蓉, 王海燕, 等. 延川南煤层气排采井防煤粉工艺技术研究[J]. 油气藏评价与开发, 2017, 7(4): 73-76+82.ZHANG Honglu, WANG Rong, WANG Haiyan, et al. Research on the pulverized coal control technique of coalbed methane in southern Yanchuan area [J]. Petroleum Reservoir Evaluation and Development, 2017, 7(4): 73-76+82.[80] 秦绍锋, 王若仪. 潘河区块煤层气L型水平井排采工艺及配套技术研究[J]. 煤炭科学技术, 2019, 47(9): 132-137.QIN Shaofeng, WANG Ruoyi. Study on gas drilling technology and supporting technology for L-type horizontal well in Panhe Block [J]. Coal Science and Technology,2019, 47 (9):132-137.[81] 吴壮坤, 张宏录, 池宇璇, 等. 新型排采泵在延川南深层煤层气井的改进及应用[J]. 油气藏评价与开发, 2023, 13(4): 416-423.WU Zhuangkun, ZHANG Honglu, CHI Yuxuan, et al. Improvement and application of a novel drainage pump of deep coalbed methane wells in south Yanchuan [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4):416-423.[82] 徐慧. 粒子群优化算法改进及其在煤层气产能预测中的应用研究[D]. 徐州: 中国矿业大学, 2013.[83] Yang R, Qin X, Liu W, et al. A physics-constrained data-driven workflow for predicting Coalbed methane well production using artificial neural network[J]. SPE Journal, 2022, 27(03): 1531-1552.[84] 宋洪庆, 都书一, 杨焦生, 等. 基于机器学习的煤层气产能标定智能算法及影响因素分析[J]. 工程科学学报, 2024, 46(4): 614-626.SONG Hongqing, DU Shuyi, YANG Jiao sheng, et al. Forecasting and influencing factor analysis of coalbed methane productivity utilizing intelligental gorithms [J]. Journal of Engineering Science, 2024, 46(4): 614-626.[85] 胡可. 基于测井数据与CNN-GRU模型的煤层含气量预测研究[D]. 徐州: 中国矿业大学, 2024. |
[1] | 高计县,王海侨,张红军,等. 七元煤矿煤层气储层特征与定量排采制度研究[J]. 煤炭工程, 2018, 50(3): 82-85. |
[2] | 张旭峰. 彬长矿区煤层气井钻井液配置合理性分析[J]. 煤炭工程, 2018, 50(10): 117-120. |
[3] | 夏日桂. 柿庄北煤层气井活性水压裂施工参数优化研究[J]. 煤炭工程, 2016, 48(9): 36-38. |
[4] | 安士凯,徐翀,陈永春. 淮南矿区卸压煤层气井变形破坏特征研究[J]. 煤炭工程, 2016, 48(10): 88-91. |
[5] | 杜严飞. 煤层气井排采过程中储层压力传播规律研究[J]. 煤炭工程, 2011, 43(7): 87-89. |
[6] | 张付涛;刘立民;刘学建;徐林华. 淮北矿区煤层气增产技术探讨[J]. 煤炭工程, 2011, 43(6): 57-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||