煤炭工程 ›› 2023, Vol. 55 ›› Issue (6): 158-163.doi: 10. 11799/ ce202306028

• 研究探讨 • 上一篇    下一篇

基于特征融合的选煤厂振动筛故障诊断方法

柴 进,张海斌,高平小,王 湛,乔 宏   

  1. 1. 国能包头能源有限责任公司煤炭洗选分公司,内蒙古 鄂尔多斯 017000
    2. 中煤科工集团北京华宇工程有限公司,北京 100120

  • 收稿日期:2022-12-21 修回日期:2023-03-09 出版日期:2023-06-20 发布日期:2023-06-30
  • 通讯作者: 张海斌 E-mail:13810923798@163.com

Fault Diagnosis Method of Vibrating Screen for Coal Preparation Plant Based on Feature Fusion

  • Received:2022-12-21 Revised:2023-03-09 Online:2023-06-20 Published:2023-06-30

摘要:

振动筛是选煤过程的重要机械设备, 其故障信号通常伴随着外界噪声等不确定性因素的影响而表现出非线性、非平稳性的特点, 现有的故障诊断方法大多难以实现对不确定性故障特征的有效提取和准确诊断。为此, 提出了一种基于特征融合的选煤厂振动筛故障诊断方法, 采用云模型和主成分分析法提取动-静结合特征信息, 基于随机配置网络算法以自主的方式建立诊断学习网络, 保证了模型的快速收敛性能, 并利用选煤厂振动筛的数据验证了该诊断方法的有效性。

关键词: 振动筛, 故障诊断, 云模型, 主成分分析, 随机配置网络

Abstract:

The vibrating screen is an important mechanical equipment in coal preparation process and its fault signal shows nonlinearity and non-stationarity characteristics with the influence of uncertain factors such as external noise. However, most of the existing fault diagnosis methods are difficult to achieve effective extraction and accurate diagnosis of uncertain fault features. Therefore, a fault diagnosis method for vibrating screen in coal preparation plant based on feature fusion is proposed in this paper. The cloud model and principal component analysis are used to extract the dynamic-static feature information. Based on the stochastic configuration network algorithm, a diagnosis learning network is established in an autonomous way to ensure the fast convergence performance of the model. Finally, the superiority of the diagnosis method is verified by the data of the vibrating screen in the coal preparation plant.

中图分类号: