[1]葛世荣.采煤机技术发展历程六——煤岩界面探测[J].中国煤炭, 2020, 46(11):10-24[2]GE Shirong.The development history of coal shearer technology (Part six)——coal-rock interface detection[J].Chian Coal, 2020, 46(11):10-24[3]王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术, 2022, 50(1):1-27[4]WANG Guofa.New technological progress of coal mine intelligence and its problems[J].Coal Science And Technology, 2022, 50(1):1-27[5]张强, 张润鑫, 刘峻铭, 等.煤矿智能化开采煤岩识别技术综述[J].煤炭科学技术, 2022, 50(2):1-26[6]ZHANG Qiang, ZHANG Runxin, LIU Junming, et al.Review on coal and rock identification technology for intelligent mining in coal mines[J].Coal Science And Technology, 2022, 50(2):1-26[7]许献磊, 王一丹, 朱鹏桥, 等.基于高频雷达波的煤岩层位识别与追踪方法研究[J].煤炭科学技术, 2022, 50(7):50-58[8]XU Xianlei, WANG Yidan, ZHU Pengqiao, et al.Research on coal and rock horizon identification and tracking method based on high frequency radar waves[J].Coal Science And Technology, 2022, 50(7):50-58[9]许献磊, 彭苏萍, 马正, 等.基于空气耦合雷达的矿井煤岩界面随采动态探测原理及关键技术[J].煤炭学报, 2022, 47(8):2961-2977[10]XU Xianlei, PENG Suping, MA Zheng, et al.Principle and key technology of dynamic detection of coal-rock interface in coal mine based on air-coupled radar[J].Journal of China Coal Society, 2022, 47(8):2961-2977[11]刘万里, 马修泽, 张学亮.基于探地雷达的特厚煤层厚度动态探测技术[J].煤炭学报, 2021, 46(8):2706-2714[12]LIU Wanli, MA Xiuze, ZHANG Xueliang.Dynamic detection technology of extra-thick coal seam thickness based on ground penetrating radar[J].Journal of China Coal Society, 2021, 46(8):2706-2714[13]刘帅, 赵文生, 高思伟.超宽带探地雷达煤层厚度探测试验研究[J].煤炭科学技术, 2019, 47(8):207-212[14]LIU Shuai, ZHAO Wensheng, GAO Siwei.Experimental study on coal seam thickness measurement of ultra-wide band ground penetrating radar[J].Coal Science And Technology, 2019, 47(8):207-212[15]王昕.基于电磁波技术的煤岩识别方法研究[D]. 徐州:中国矿业大学, 2017.[16]王昕, 丁恩杰, 胡克想, 等.煤岩散射特性对探地雷达探测煤岩界面的影响[J].中国矿业大学学报, 2016, 45(1):34-41[17]WANG Xin, DING Enjie, HU Kexiang, et al.Effects of coal-rock scattering characteristics on the GPR detection of coal-rock interface[J].Journal of China University of Mining & Technology, 2016, 45(1):34-41[18]宋二乔, 刘四新, 何荣钦, 等.探地雷达探测季节性冻土的正演模拟[J].物探与化探, 2018, 42(5):962-969[19]SONG Erqiao, LIU Sixin, HE Rongqin, et al.Forward modeling on the seasonal frozen soil region detection by ground penetrating radar[J].Geophysical and Geochemical Exploration, 2018, 42(5):962-969[20]董泽君.粗糙界面感应场旋转干扰及其对全极化探地雷达数据的影响研究[D]. 吉林:吉林大学, 2022.[21]刘颖.分层粗糙面及埋藏目标宽带复合电磁散射与成像研究[D]. 西安电子科技大学, 2019.[22]刘颖, 郭立新.地下埋藏目标与分层粗糙面复合散射探地雷达回波特性研究[J].电波科学学报, 2019, 34(1):111-118[23]LIU Ying, GUO Lixin.Echo characteristics of GPR detecting of multiple buried targets and layered rough interface[J].Chinese Journal of Radio Science, 2019, 34(1):111-118[24]詹毅.复杂有耗色散地层中的FDTD方法以及在冲击探地雷达中的应用[D]. 西安电子科技大学, 2000.[25]Lambot S, Antoine M, Vanclooster M, et al.Effect of soil roughness on the inversion of off‐ground monostatic GPR signal for noninvasive quantification of soil properties[J].Water Resources Research, 2006, 42(3):-[26]Sun M, Pinel N, Le Bastard C, et al.Time delay and interface roughness estimations by GPR for pavement survey[J].Near Surface Geophysics, 2015, 13(3):279-287[27]董子宇, 任新成, 赵晔, 等.横向沙丘表面电磁散射的时域有限差分法研究[J].微波学报, 2022, 38(1):90-95[28]DONG Ziyu, REN Xincheng, ZHAO Ye, et al.Study on Electromagnetic Scattering from the Surface of Transverse Dunes Using Finite Difference Time Domain Method[J].Journal of Microwaves, 2022, 38(1):90-95[29]郭立新, 魏仪文, 柴水荣.目标与复杂地海面复合电磁散射研究现状综述[J].电波科学学报, 2020, 35(1):69-84[30]GUO Lixin, WEI Yiwen, CHAI Shuirong, et al.A review on the research of composite electromagnetic scattering from target and rough surface[J].Chinese Journal of Radio Science, 2020, 35(1):69-84[31]任新成.粗糙面电磁散射及其与目标的复合散射研究[D]. 西安电子科技大学, 2008.[32]Guo Lixin, Ren Yuchao.Study on the Doppler Spectrum from the Time-Varying Sea Surface Using Kirchhoff Approximation. Asia-Pacific Radio Science Conference Proceedings. 2004, 8: 47-49, QingDao, China. |