[1]李恒, 何滔, 郭宾.生态脆弱区浅埋煤层保水开采隔水层稳定性评价方法[J].煤田地质与勘探, 2023, 51(11):92-98[2]LI Heng,HE Tao,GUO Bin.A method for evaluat-ing aquiclude stability in the water conservation-based mining of shallowly buried coal seams in eco-logically vulnerable areas in northwest China[J].Coal Geology&Exploration, 2023, 51(11):92-98[3]张奎奎, 周辉, 张树光, 等.浅埋厚煤层连续采动下多关键层结构覆岩运移规律研究[J].矿业研究与开发, 2024, 44(01):34-41[4]ZHANG Kuikui,ZHOU Hui,ZHANG Shuguang, et al.Study on Overburden Migration Law of Multiple Key Layers in Shallow-buried and Thick Coal Seam[J].Mining Research and Develop-ment, 2024, 44(01):34-41[5]张金金, 杜航, 张嘉晨, 等.浅埋煤层综放开采导水裂隙发育特征及隔水层稳定性研究[J].煤炭工程, 2024, 56(01):78-85[6]ZHANG Jinjin, DU Hang, ZHANG Jiachen, et al.De-velopment characteristics of water flowing fracture and stability of aquiclude in longwall top-coal caving of shallow coal seam[J].Coal Engineering, 2024, 56(01):78-85[7]李晓斌, 李全生, 韩鹏华, 等.高强度开采地表损伤程度分类判别与控制研究[J].采矿与岩层控制工程学报, 2022, 4(03):90-99[8]LI Xiaobin, LI Quansheng, HAN Penghua, et al.Identification of surface damage degree in high-intensity mining and control technologies[J].Journal of Mining and Strata Control Engineering, 2022, 4(3):90-99[9]郭文兵, 赵高博, 白二虎.煤矿高强度长壁开采覆岩破坏充分采动及其判据[J].煤炭学报, 2020, 45(11):3657-3666[10]GUO Wenbing, ZHAO Gaobo, BAI Erhu.Critical failure of overlying rock strata and its criteria in-duced by high-intensity longwall mining[J].Journal of China Coal Society, 2020, 45(11):3657-3666[11]黄庆享, 王小军, 胡俭, 等.峁梁区浅埋采空区下开采顶板活化结构与支架动载研究[J].采矿与安全工程学报, 2023, 40(05):983-990[12]HUANG Qingxiang, WANG Xiaojun, HU Jian, et al.Activated roof structure and dynamic load of support under goaf of shallow-buried close coal seams in lo-ess hilly area[J].Journal of Mining&Safety Engineer-ing, 2023, 40(5):983-990[13]杜明浩, 宁建国, 王俊, 等.浅埋煤层工作面开采覆岩应力场-裂隙场时变演化规律研究[J].煤矿安全, 2023, 54(04):148-155[14]DU Minghao, NING Jianguo, WANG Jun, et al.Re-search on time-varying evolution law of overburden stress field and fracture field in shallow coal seam mining[J].Safety in Coal Mines, 2023, 54(04):148-155[15]徐飞亚, 郭文兵, 王晨.浅埋深厚煤层高强度开采地表沉陷规律研究[J].煤炭科学技术, 2023, 51(05):11-20[16]XU Feiya, GUO Wenbing, WANG Chen.Research on surface subsidence law in high-intensity mining of shallow buried with thick coal seam[J].Coal Science and Technology, 2023, 54(04):148-155[17]王双明, 魏江波, 宋世杰, 等.黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究[J].煤炭科学技术, 2022, 50(05):1-9[18]WANG Shuangming, WEI Jiangbo, SONG Shijie, et al.Study on overburden and surface damage charac-teristics of shallow-buried coal seam mining in loess gully area[J].Coal Science and Technolo-gy, 2022, 50(5):1-9[19]黄庆享, 杜君武, 侯恩科, 等.浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J].采矿与安全工程学报, 2019, 36(01):7-15[20]Huang Qingxiang, Du Junwu, Hou Enke, et al.Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J].Journal of Mining & Safety Engi-neering, 2019, 36(1):7-15[21]徐祝贺,李全生,李晓斌,等.浅埋高强度开采覆岩结构演化及地表损伤研究[J].煤炭学报, 2020, 45(8):2728-2739[22]XU Zhuhe, LI Quansheng, LI Xiaobin, et al.Study on structural evolution and surface damage of overbur-den in shallow and high-intensity mining[J].Journal of China Coal Society, 2020, 45(8):2728-2739[23]王方田, 邵栋梁, 牛滕冲, 等.浅埋高强度开采回撤巷道煤柱受载特征及累积损伤机制[J].岩石力学与工程学报, 2022, 41(06):1148-1159[24]WANG Fangtian.SHAO DongliangNIU Tengchong. Progressive loading characteristics and accumulated damage mechanisms of shallow-buried coal pillars in withdrawal roadways with high-strength mining ef-fect[J].Chinese Journal of Rock Mechanics and En-gineering, 2022, 41(06):1148-1159[25]崔峰, 冯港归, 来兴平, 等.巨厚强冲击倾向性煤层高强度开采特征与高强度开采定义[J].煤炭学报, 2023, 48(02):649-665[26]CUI Feng,FENG Ganggui,LAI Xingping, et al.Characteristics and definition of high-intensity min-ing in extremely thick coal seam with strong impact tendency[J].Journal of China Coal Society, 2023, 48(02):649-665[27]李江华, 王东昊, 黎灵, 等.不同覆岩类型高强度采动裂隙发育特征对比研究[J].煤炭科学技术, 2021, 49(10):9-15[28]LI Jianghua,WANG Donghao,LI Ling, et al.Com-parative study on development characteristics of high-intensive mining fissures in different overbur-den types[J].Coal Science and Technology, 2021, 49(10):9-15[29]王云广,郭文兵,白二虎,等.高强度开采覆岩运移特征与机理研究[J].煤炭学报, 2018, 43(S1):28-35[30]WANG Yunguang, GUO Wenbing, BAI Erhu, et al.Characteristics and mechanism of overlying strata movement due to high-intensity mining[J].Journal of China Coal Society, 2018, 43(S1):28-35[31]赵兵朝, 郭亚欣, 孙浩, 等.基于主关键层位置的近浅埋煤层采动覆岩隔水层稳定性研究[J].采矿与安全工程学报, 2022, 39(04):653-662[32]ZHAO Bingchao, GUO Yaxin, SUN Hao, et al.Stability research on the water-resistant strata under mining in nearly shallow coal seam based on location of main key stratum[J].Journal of Mining & Safety Engineer-ing, 2022, 39(04):653-662[33]许延春, 李俊成, 刘世奇, 等.综放开采覆岩“两带”高度的计算公式及适用性分析[J].煤矿开采, 2011, 16(02):4-7[34]XU Yanchun, LI Junchneg, LIU Shiqi, et al.Calculation Formula of "Two-zone" Height of Overlying Strata and Its Adaptability Analysis[J].Coal Mining Tech-nology, 2011, 16(02):4-7[35]钱鸣高,石平五..矿山压力与岩层控制[J]., 2003, :177-179[36]杨俊哲, 贾林刚, 宋桂军, 等.补连塔煤矿综采大采高覆岩破坏“两带”高度实测研究[J].煤矿开采, 2018, 23(05):73-76[37]YANG Junzhe, JIA Lingang, SONG Guijun, et al.Study on Practical Testing of Overburden Rock Damage 'Two zones' Height of Fully Mechanized Coal Mining with Large Mining Height[J].Coal Mining Technolo-gy, 2018, 23(05):73-76[38]谭毅, 郭文兵, 杨达明, 等.非充分采动下浅埋坚硬顶板“两带”高度分析[J].采矿与安全工程学报, 2017, 34(05):845-851[39]TAN Yi, GUO Wenbing, YANG Daming, et al.Analysis on height of “two zones” under subcritical mining in shallow coal seam with hard roof[J].Journal of Min-ing & Safety Engineering, 2017, 34(05):845-851 |