[1] Lin Guancen, Lin Aijing, Gu Danlei. Using support vector regression and K-nearest neighbors for short-term traffic flow prediction based on maximal information coefficient [J]. Information Sciences, 2022, 608: 517-531.[2] Tang Jinjun, Chen Xinqiang, Hu Zheng, et al. Traffic flow prediction based on combination of support vector machine and data denoising schemes [J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: 120642.[3] Rossman L A.“EPANET user’s manual, risk reduction engineering laboratory[J]”. US Environmental Protection Agency, Cincinnati, Ohio, USA,2000.[4] 苟非洲,程玉婷 . 基于长短期记忆网络的日供水量预测方法研究[J]. 中国给水排水,2019,35(17):79-83. GOU Feizhou, CHENG Yuting. Daily water supply forecasting method based on long short-term memory network [J]. China Water & Wastewater,2019,35 (17):79-83(in Chinese)[5] ZHANG D,HOLLAND E S,LINDHOLM G,et al. Hydraulic modeling and deep learning based flow forecasting for optimizing inter catchment wastewater transfer [J]. Journal of Hydrology, 2018, 567: 792-802.[6] ZHANG D,LINDHOLM G,RATNAWEERA H. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring[J]. Journal of Hydrology,2018,556:409-418.[7] Sun,Zhenzhong,Bai,et al.A multi-pattern deep fusion model for short-term bus passenger flow forecasting[J].Applied Soft Computing,2017.[8] Zhang S, Tong H, Xu J, et al. Graph convolutional networks: a comprehensive review[J]. [9] Zhang S, Tong H, Xu J, et al. Graph convolutional networks: a comprehensive review[J].Computational Social Networks, 2019, 6(1): 1-23..[10] VERMAAK J,BOTHA E C:Recurrent neural networks for short-term load forecasting. IEEE Trans. Power Syst. 13(1), 126–132 (1998)[11] Hochreiter , S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.[12] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. |