[1]谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报, 2019, 44(05):1283-1305
[2]XIE Heping.Research review of the state key research development program of China: Deep rock mechanics and mining theory[J].Journal of China Coal Society, 2019, 44(05):1283-1305
[3]袁亮.煤炭精准开采科学构想[J].煤炭学报, 2017, 42(01):1-7
[4]YUAN Liang.Scientific conception of precision coal mining[J].Journal of China Coal Society, 2017, 42(01):1-7
[5]王杜娟, 贺飞, 王勇, 等.煤矿岩巷全断面掘进机及智能化关键技术[J].煤炭学报, 2020, 45(06):2031-2044
[6]WANG Dujuan, HE Fei, WANG Yong, et al.Tunnel boring machine (TBM) in coal mine and its intelligent key technology[J].Journal of China Coal Society, 2020, 45(06):2031-2044
[7]TANG Bin, CHENG Hua, TANG Yongzhi, et al.Excavation damaged zone depths prediction for TBM -excavated roadways in deep collieries[J].Environmental Earth Sciences, 2018, 77(5):1-14
[8]刘泉声, 刘滨, 唐彬, 等.煤矿深部巷道碎胀大变形灾害控制及大变形灾变环境下快速成巷技术[J].煤炭学报, 2025, 50(01):224-244
[9]LIU Quansheng, LIU Bin, TANG Bin, et al.The control of fragmenting swelling deformation disasters in deep mine roadways and the efficient TBM tunneling technology under such conditions[J].Journal of China Coal Society, 2025, 50(01):224-244
[10]严红, 吴林, 李桂臣, 等.煤矿岩巷快速掘进研究进展与展望[J].煤炭工程, 2025, 57(01):1-7
[11]YAN Hong, WU Lin, LI Guichen, et al.Research progress and prospects of rapid TBM excavation in coal mine rock roadways[J].Coal Engineering, 2025, 57(01):1-7
[12]ROSTAMI J.Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure[D]. Golden: Colorado School of Mines, 1977.
[13]Sanio H P.Prediction of the performance of disc cutters in anisotropic rock[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985, 22(3):153-161
[14]Bruland, A.Hard rock tunnel boring[D]. Trondheim: Norwegian University of Science and Technology, 1998.
[15]BIENIAWSKI Z T, CELADA B, GALERA J M, et al.New applications of the excavability index for selection of TBM types and predicting their performance[C]//ITA-AITES World Tunnel Congress and 34th ITA General Assembly. Agra, 2008:1618-1629.
[16]BARTON N.Rock mass classification for choosing between TBM and drill-and-blast or a hybrid solution[C]//Proceedings Internation Conference on Tunnels and Underground Structures. Singapore: [s. n.], 2000: 35-50.
[17]BARTON N.TBM tunnelling in jointed and faulted rock[M]. Boca Raton: CRC Press, 2000.
[18]杜立杰,齐志冲,韩小亮,等.基于现场数据的可掘性和掘进性能预测方法[J].煤炭学报, 2015, 40(6):1284-1289
[19]DU Lijie, QI Zhichong, HAN Xiaoliang, et al.Prediction method for the boreability and performance of hard rock TBM based on boring data on site[J].Journal of China Coal Society, 2015, 40(6):1284-1289
[20]刘佳伟, 张盛, 陈召, 等.基于掘进性能和适应性分析的围岩分级方法及应用[J].煤田地质与勘探, 2023, 51(08):161-170
[21]LIU Jiawei, ZHANG Sheng, CHEN Zhao, et al.A method for classification of surrounding rock based on the excavatability performance and adaptability of tunnel boring machines and its applications[J].Coal Geology & Exploration, 2023, 51(08):161-170
[22]吴志军, 方立群, 翁磊, 等.基于掘进性能的岩体分级及可掘性等级感知识别方法[J].岩石力学与工程学报, 2022, 41(S1):2684-2699
[23]WU Zhijun, FANG Liqun, WENG Lei, et al.A classification and boreability perception and recognition method for rock mass based on TBM tunneling performance[J].Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1):2684-2699
[24]杨文坤.基于双模态数据和知识驱动的TBM围岩分类识别研究[D].东南大学, 2023.
[25]YANG Wenkun.Study on TBM surrounding rock classification identification based on bimodal data and knowledge-driven method[D]. Southeast University, 2023.
[26]曹晋镨, 刘芳, 申志福.基于长短期记忆网络的掘进预测模型及围岩等级对预测精度的影响[J].土木工程学报, 2022, 55(S2):92-102
[27]CAO Jinpu, LIU Fang, SHEN Zhifu.A LSTM-based model for TBM performance prediction and the effect of rock mass grade on prediction accuracy[J].China Civil Engineering Journal, 2022, 55(S2):92-102
[28]荆留杰.TBM掘进性能预测及智能辅助控制研究[D].中国矿业大学, 2022.
[29]JING Liujie.Research on TBM Tunneling Performace Predication and Intelligent Auxiliary Control[D]. China University of Mining and Technology, 2022.
[30]LIU Q, LIU J, PAN Y, et al.A case study of TBM performance prediction using a Chinese rock mass classification system – hydropower classification (HC) method[J]. Tunnelling and Underground Space Technology, 2017, 65: 140-154.[J].Tunnelling and Underground Space Technology, 2017, 65(May):140-154
[31]HASSANPOUR J, ROSTAMI J, ZHAO J, et al.TBM performance and disc cutter wear prediction based on ten years experience of TBM tunnelling in Iran[J].Geomechanics and Tunnelling, 2015, 8(3):239-247
[32]张全太, 刘泉声, 黄兴.净掘进速率预测模型及多指标评价方法研究[J].煤炭工程, 2021, 53(05):107-113
[33]ZHANG Quantai, LIU Quansheng, HUANG Xing.Prediction model and multi-index evaluation method for TBM penetration rate[J].Coal Engineering, 2021, 53(05):107-113
[34]张辉, 宋泓炎, 范华超, 等.基于--的轴承故障诊断方法研究[J].煤炭工程, 2025, 57(02):149-155
[35]ZHANG Hui, SONG Hongyan, FAN Huachao, et al.Fault diagnosis of hoist main bearing based on MOGOA-VMD-LSSVM[J].Coal Engineering, 2025, 57(02):149-155
[36]Seyedali Mirialli, Seyed Mohammad Mirialli, Andrew Lewis.Grey Wolf Optimizer. Advances in Engineering Sofware.2014.69.[J].Advances in Engineering Sofware, 2014, 69(69):46-61
[37]张帆, 李玉雪, 李昱翰, 等.基于数字孪生的煤矿两柱式支架载荷预测方法[J].煤炭科学技术, 2025, 53(01):312-325
[38]ZHANG Fan, LI Yuxue, LI Yuhan, et al.SSA-RF: A novel prediction method for two-column supports in coalmines based on digital twins[J].Coal Science and Technology, 2025, 53(01):312-325
[39]李鹏, 辛诗雨, 闫凡壮, 等.基于深度学习的煤巷掘进工作面瓦斯涌出量预测研究[J].煤炭工程, 2024, 56(12):115-124
[40]LI Peng, XIN Shiyu, YAN Fanzhuang, et al.Prediction of gas emission from coal roadway heading face based on deep learning theory[J].Coal Engineering, 2024, 56(12):115-124 |