| [1]石焕, 程宏志, 刘万超.我国选煤技术现状及发展趋势[J].煤炭科学技术, 2016, 44(6):169-174[2]Shi Huan, Cheng Hongzhi, Liu Wanchao.Present status and development trend of China’s coal preparation technology[J].Coal Science and Technology, 2016, 44(6):169-174[3]夏云凯, 李功民.我国动力煤干选技术现状及展望[J].洁净煤技术, 2017, 23(6):17-25[4]Xia Yunkai, Li Gongmin.Current situation and prospects of power coal dry separation technology in China[J].Clean Coal Technology, 2017, 23(6):17-25[5] 李慧.TDS智能干选机分选原理[J]. 山东煤炭科技, 2017(10):111-113.[6]Li Hui.TDS intelligent dry sorter sorting principle[J]. Shandong Coal Science and Technology, 2017(10):111-113.[7]潘越, 曾哲, 张恩瑜.基于和图像灰度值对射线探测煤矸识别的研究[J].煤炭技术, 2017, 36(11):307-309[8]Pan Yue, Zeng Zhe, Zhang Enyu.Research on X Ray Detection of Coal Gangue Recognition Based on MATLAB and Image Gray Values[J].Coal Technology, 2017, 36(11):307-309[9] Wang W, Zhang C.Separating coal and gangue using three-dimensional laser scanning[J]. International Journal of Mineral Processing, 2017, 169:79-84.[10]王卫东, 张晨, 马中良, 等.煤矸光电分选系统设计[J].工矿自动化, 2013, 39(12):5-8[11]Wang Weidong, Zhang Chen, Ma Zhongliang, et al.Design of photometric separation system for coal and gangue[J].Industry and Mine Automation, 2013, 39(12):5-8[12] 张晨.煤矸光电密度识别及自动分选系统的研究[D]. 中国矿业大学(北京), 2013.[13]Zhang Chen.Research on separation of gangue in coal by measuring density and its automatic separation system based on electro-optics technology[D]. China University of Mining and Technology (Beijing), 2013.[14]何敏, 王培培, 蒋慧慧.基于和纹理的煤和煤矸石自动识别[J].计算机工程与设计, 2012, 33(3):1117-1121[15]He Min, Wang Peipei, Jiang Huihui.Recognition of coal and stone based on SVM and texture[J].Computer Engineering and Design, 2012, 33(3):1117-1121[16]于国防.煤矸区分中的间隔灰度压缩扩阶共生矩阵[J].中国图象图形学报, 2012, 17(8):966-970[17]Yu Yufang.Expanded order co-occurrence matrix to differentiate between coal and gangue based on interval grayscale compression[J].Journal of Image and Graphics, 2012, 17(8):966-970[18]陈雪梅, 张晞, 徐莉莉, 等.煤与矸石分形维数的差异研究[J].煤炭科学技术, 2017, 45(7):196-199[19]Chen Xuemei, Zhang Wei, Xu Lili, et al.Study on fractal dimension differences of coal and rock[J].Coal Science and Technology, 2017, 45(7):196-199[20]易超人, 邓燕妮.多通道卷积神经网络图像识别方法[J].河南科技大学学报:自然科学版, 2017, 38(3):41-44[21]Yi Chaoren, Deng Yanni.Multi-channel convolutional neural network image recognition method[J]. Journal of Henan University of Science and Technology (Natural Science) 2017, 38(3):41-44.[22] 祝璞.基于多通道的分层特征提取的图像识别[D]. 中国科学技术大学, 2016.[23]Zhu Pu.Multi-Channel Hierarchical Feature Extraction for Image Recognition[D]. University of Science and Technology of China, 2016.[24]周飞燕, 金林鹏, 董军.卷积神经网络研究综述[J].计算机学报, 2017, 40(6):1229-1251[25]Zhou Feiyan, Jin Linpeng, Dong Jun.Review of Convolutional Neural Networks[J].Chinese Journal of Computers, 2017, 40(6):1229-1251[26] Zeiler M D, Taylor G W, Fergus R.Adaptive deconvolutional networks for mid and high level feature learning[C]. International Conference on Computer Vision. IEEE Computer Society, 2011:2018-2025.[27]孙继平, 佘杰.基于小波的煤岩图像特征抽取与识别[J].煤炭学报, 2013, 38(10):1900-1904[28]Sun Jiping, Yu Jie.Wavelet-based coal-rock image feature extraction and recognition[J].Journal of China Coal Society, 2013, 38(10):1900-1904[29]赵焕利, 王玉德, 张学志, 等.小波变换和特征加权融合的人脸识别[J].中国图象图形学报, 2012, 17(12):1522-1527[30]Zhao Huanli, Wang Yude, Zhang Xuezhi, et al.Face recognition based on wavelet transform and weighted fusion of face features[J].Journal of Image and Graphics, 2012, 17(12):1522-1527[31] Wang W, Lv Z, Lu H.Research on methods to differentiate coal and gangue using image processing and a support vector machine[J]. International Journal of Coal Preparation and Utilization, 2018, 1-14..[32] Lee-Thorp J, Ainslie J, Eckstein I, et al.FNet: Mixing Tokens with Fourier Transforms[J]. 2021.[33] Teed Z, Deng J .RAFT: Recurrent All-Pairs Field Transforms for Optical Flow[J]. 2020.[34] Lv.Z, Wang W, Xu Z, Zhang K, Lv H, Cascade network for detection of coal and gangue in the production context, Powder Technology, 377 (2021) 361-371. |