| [1]刘泉声, 黄兴, 潘玉丛, 等.在煤矿巷道掘进中的技术应用和研究进展[J].煤炭科学技术, 2023, 51(1):242-259
[2]LIU Quansheng, HUANG Xing, PAN Xucong, et al.Application and research progress of TBM tunneling in coal mine roadway[J].Coal Science and Technology, 2023, 51(1):242-259
[3]贺飞, 鲁义强, 代恩虎, 等.煤矿岩巷适应性与新技术发展[J].煤炭科学技术, 2023, 51(S1):351-361
[4]HE Fei, LU Yiqiang, DAI Enhu, et al.Application of TBM in coal mine adaptability type selection analysis and new technology development[J].Coal Science and Technology, 2023, 51(S1):351-361
[5]GONG Qiuming, YIN Lijun, MA Hongsu, et al.TBM tunneling under adverse geological conditions: an overview[J]. Tunneling and Underground space Technology, 2016, 57:4-17.[J].Tunneling and Underground space Technology, 2016, 57:4-17
[6]陈良发, 谭家贵, 汪义龙, 等.煤矿瓦斯抽采巷小直径转弯位姿控制研究与应用[J].煤炭工程, 2023, 55(11):70-76
[7]CHEN Liangfa, TAN Jiagui, WANG Yilong, et al.Turning position and pose control of small diameter TBM in coal mine gas extraction roadway[J].Coal Engineering, 2023, 55(11):70-76
[8]李宁博.基于岩体地质信息感知的TBM掘进参数与姿态辅助智能决策方法[D].山东大学, 2022.
[9]LI Ningbo.Intelligent decision-making method for TBM tunneling parameters and attitude assistance based on rock geological information perception[D]. Shongdong University, 2022.
[10]WANG Pei, KONG Xianguang, GUO Zekun, et al.Prediction of axis attitude deviation and deviation correction method based on data driven during shield tunneling[J]. IEEE Access, 2019, 7:163487-163501.
[11]HUANG Hongwei, CHANG Jiaqi, ZHANG Dongming, et al.Machine leaning-based automatic control of tunneling posture of shield machine[J].Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(4):1153-1164
[12]ZHANG Nan, ZHANG Ning, ZHENG Qian, et al.Real-time prediction of shield moving trajectory during tunneling using GRU deep neural network[J]. Acta Geotechnica, 2022.17(4):1167-1182.
[13]ZHOU Chegn, XU Hengcheng, DING Lieyun, et al.Dynamic prediction for attitude and position in shield tunneling: a deep learning method[J]. Automation in Construction, 2019, 105:102840.
[14]XIAO Haohan, XING Bo, WANG Yujie, et al.Prediction of shield machine attitude based on various artificial intelligence technologies[J].Applied Sciences, 2021, 11(21):10264-
[15]夏汉庸, 尹和军, 徐教煌, 等.基于机器学习的多施工参数盾构施工姿态预测[J].测绘通报, 2021, (1):157-160+164.
[16]XIA Hanyong, YIN Hejun, XU Jiaohuang, et al.Multi-construction parameter shield construction attitude prediction based on machine learning[J]. Bulletin of Surveying and Mapping, 2021, (1):157-160+164.
[17]徐进, 林良宇, 章龙管, 等.基于深度学习的盾构掘进姿态预测模型[J].地下空间与工程学报, 2022, 18(S2):813-821
[18]XU Jin, LIN Liangyu, ZHANG Longguan, et al.Prediction model of shield tunneling attitude based on deep learning[J].Chinese Journal of Underground Space and Engineering, 2022, 18(S2):813-821
[19]李培楠, 刘学, 戴泽余, 等.基于混合深度学习的盾构掘进姿态和位置的动态预测[J].东华大学学报自然科学版, 2024, 50(03):145-152
[20]LI Peinan, LIU Xue, DAI Zeyu, et al.Dynamic prediction for attitude and position in shield tunneling based on hybrid deep learning method[J].Journal of Donghua University (Natural Science), 2024, 50(03):145-152
[21]王树英, 汪来, 潘秋景.基于数据驱动的盾构竖向姿态预测深度学习模型[J].中南大学学报自然科学版, 2024, 55(02):485-499
[22]WANG Shuying, WANG Lai, PAN Qiujing.Data-driven deep learning model of shield vertical attitude prediction[J].Journal of Central South University(Science and Technology), 2024, 55(02):485-499
[23]杜立杰, 郝洪达, 李青蔚, 等.基于LSTM神经网络的小转弯隧道TBM掘进轴线偏差预测方法[J/OL].煤炭学报, 1-11[2024-08-22].
[24]DU Lijie, HAO Hongda, LI Qingwei, et al.Prediction Method of TBM Excavation Axis Deviation for Small Turning Tunnels Based on LSTM Neural Network[J/OL]. Journal of China Coal Society, 1-11[2024-08-22].
[25]王琳, 周捷, 林海飞, 等.基于集成模型的煤层瓦斯含量预测研究[J].煤炭工程, 2024, 56(04):125-132
[26]WANG Lin, ZHOU Jie, LIN Haifei, et al.Coal seam gas content prediction based on Stacking integrated model[J].Coal Engineering, 2024, 56(04):125-132
[27]李昊, 高林生, 刘麟, 等.深度学习在煤矿水力压裂微震检测中的应用[J].西安科技大学学报, 2023, 43(04):686-696
[28]LI Hao, GAO Linsheng, LIU Lin, et al.Application of deep learning in microseismic detection of hydraulic fracturing in coal mine[J].Journal of Xi' an University of Science and Technology, 2023, 43(04):686-696
[29]HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J].Neural Computation, 1997, 9(8):1735-1780
[30]GRAVES A, SCHMIDHUBER J.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Network, 2005; 18(5/6): 602-610.
[31]侯恩科, 徐林啸, 荣统瑞.彬长大佛寺矿井涌水量时序预测[J].西安科技大学学报, 2024, 44(03):490-500
[32]HOU Enke, XU Linxiao, RONG Tongrui.Time series prediction of mine water inflow from Binchang Dafosi mine[J].Journal of Xi' an University of Science and Technology, 2024, 44(03):490-500
[33]XUE Jiankai, SHEN Bo.A novel swarm intelligence optimization approach: sparrow search algorithm[J].Systems Science and Control Engineering, 2020, 8(1):22-34
[34]李爱莲, 全凌翔, 崔桂梅, 等.融合正余弦和柯西变异的麻雀搜索算法[J].计算机工程与应用, 2022, 58(03):91-99
[35]LI Ailian, QUAN Lingxiang, CUI Guimei, et al.Sparrow Search Algorithm Combining Sine-Cosine and Cauchy Mutation[J].Computer Engineering and Applications, 2022, 58(03):91-99
[36]邵鹏, 吴志健, 周炫余, 等.基于折射原理反向学习模型的改进粒子群算法[J].电子学报, 2015, 43(11):2137-2144
[37]SHAO Peng, WU Zhijian, ZHOU Xuanyu, et al.Improved particle swarm optimization algorithm based on opposite learning of refraction[J].Acta Electronica Sinica, 2015, 43(11):2137-2144
[38]MIRJALILI S.SCA: a sine cosine algorithm for solving optimization problems[J].Knowledge-Based Systems, 2016, 96(5):120-133 |