煤炭工程 ›› 2025, Vol. 57 ›› Issue (11): 175-185.doi: 10. 11799/ ce202511022

• 研究探讨 • 上一篇    下一篇

基于优化深度学习算法的TBM掘进位姿预测模型研究

梁西栋,张思华,蔺成森,丁自伟,张超凡   

  1. 1. 陕西正通煤业有限责任公司,陕西 咸阳 713699 2. 山东能源集团西北矿业有限公司,陕西 西安 710021 3. 西安科技大学 能源与矿业工程学院,陕西 西安 710054
  • 收稿日期:2024-09-09 修回日期:2024-11-05 出版日期:2025-11-10 发布日期:2026-01-09
  • 通讯作者: 丁自伟 E-mail:zwding519@163.com

TBM tunneling pose prediction model based on optimized deep learning algorithm

  • Received:2024-09-09 Revised:2024-11-05 Online:2025-11-10 Published:2026-01-09

摘要:

在煤矿巷道掘进过程中,全断面隧道掘进机(TBM)的掘进路径可能会因环境的不确定性和复杂性而偏离预定轴线。为了提升TBM位姿预测的准确性,提出了一种基于优化深度学习算法的TBM掘进位姿预测模型, 对收集的TBM 掘进参数进行数据提取与清洗,利用卷积神经网络(CNN)提取数据的空间特征, 利用双向长短期记忆网络(BiLSTM)学习数据的时间依赖关系。为进一步优化模型性能,采用融合正余弦和柯西变异的麻雀优化算法(SCSSA)优化CNN-BiLSTM 模型的超参数。结果表明,优化后的模型在多个误差指标上表现显著提升,包括平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方误差(MSE)和均方根误差(RMSE),同时相关系数(R)和决定系数(R2)等性能指标也有所提高。具体来说,SCSSA-CNN-BiLSTM模型在预测TBM掘进的滚动角、俯仰角、方位角和水平偏差等位姿参数时,决定系数R2可以达到0.99820.99440.99360.9865,验证了该模型在煤矿巷道TBM掘进位姿预测中的高效性和准确性。

关键词: 全断面隧道掘进机, 巷道掘进, 深度学习, 位姿预测, SCSSA-CNN-BiLSTM模型

Abstract:

In the process of coal mine roadway excavation, the tunneling path of Tunnel Boring Machine (TBM) may deviate from the predetermined axis due to the uncertainty and complexity of the environment. In order to improve the accuracy of TBM pose prediction, this paper proposes a TBM tunneling pose prediction model based on optimized deep learning algorithm. The collected TBM tunneling parameters are extracted and cleaned, and the spatial features of the data are extracted by convolutional neural network (CNN). Bidirectional long short-term memory network (BiLSTM) is used to learn the time dependence of the data. In order to further optimize the performance of the model, the Sparrow Optimization Algorithm with Sine Cosine and Cauchy Mutation (SCSSA) is used to optimize the hyperparameters of the CNN-BiLSTM model. The results show that the optimized model has a significant improvement in multiple error indicators, including mean absolute error (MAE), mean absolute percentage error (MAPE), mean square error (MSE) and root mean square error (RMSE). At the same time, the performance indicators such as correlation coefficient (R) and coefficient of determination (R2) are also improved. Specifically, when the SCSSA-CNN-BiLSTM model predicts the pose parameters such as rolling angle, pitch angle, azimuth angle and horizontal deviation of TBM tunneling, the determination coefficient R2 reaches 0.9982,0.9944,0.9936 and 0.9865, respectively, which verifies the efficiency and accuracy of the model in the prediction of TBM tunneling pose in coal mine roadway.

中图分类号: