| [1]Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.[2]Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745. [3]Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.[4]Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.[5] Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.[6] Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.[7] Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.[8] Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.[9] Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.[10] 谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.[11] Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.[12]张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.[13]左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.[14] 吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.[15] Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713., [1]Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.[2]Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745. [3]Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.[4]Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.[5] Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.[6] Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.[7] Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.[8] Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.[9] Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.[10] 谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.[11] Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.[12]张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.[13]左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.[14] 吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.[15] Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713., [1]Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.[2]Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745. [3]Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.[4]Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.[5] Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.[6] Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.[7] Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.[8] Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.[9] Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.[10] 谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.[11] Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.[12]张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.[13]左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.[14] 吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.[15] Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713., [1]Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.[2]Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745. [3]Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.[4]Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.[5] Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.[6] Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.[7] Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.[8] Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.[9] Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.[10] 谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.[11] Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.[12]张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.[13]左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.[14] 吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.[15] Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713. |