王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297-322.WANG Enyuan,ZHANG Guorui,ZHANG Chaolin,et al.Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society, 2022, 47(1): 297-322.[2] 邓敢博. 基于数据融合的瓦斯灾害信息系统设计[J]. 煤炭技术, 2021, 40(8): 116-119.DENG Ganbo. Design of Gas Disaster Information System Based on Data Fusion[J]Coal Technology.2021, 40(8): 116-119[3] 马文伟,付巍,薛彦平. 近距离煤层群开采工作面瓦斯涌出量预测方法研究[J]. 煤炭科学技术, 2021, 49(7): 104-109.MA Wenwei,FU Wei,XUE Yanping.Study on prediction method of gas emission rate in mining faces of contiguous seams[J].Coal Science and Technology, 2021, 49(7): 104-109.[4] 秦玉金,苏伟伟,姜文忠,等. 我国矿井瓦斯涌出量预测技术研究进展及发展方向[J]. 煤矿安全, 2020, 51(10): 52-59.QIN Yujin,SU Weiwei,JIANG Wenzhong,et al. Research Progress and Development Direction of Mine Gas Emission Forecast Technology in China[J]. Safety in Coal Mines, 2020, 51(10): 52-59.[5] 章立清,秦玉金,姜文忠,等. 我国矿井瓦斯涌出量预测方法研究现状及展望[J]. 煤矿安全, 2007, (8): 58-60.ZHANG Liqing,QIN Yujin,JIANG Wenzhong,et al.Research status and Prospect of Prediction methods of Mine Gas Emission in China[J]. Safety in Coal Mines, 2007, (8): 58-60.[6] 姜文忠,霍中刚,秦玉金. 矿井瓦斯涌出量预测技术[J]. 煤炭科学技术, 2008, (6): 1-4.JIANG Wenzhong,HUO Zhonggang,QIN Yujin.Predicted technology of mine gas emission[J].Coal Science and Technology, 2008, (6): 1-4.[7] 徐青伟,王兆丰. 矿山统计法瓦斯涌出量预测中存在的错误及修正[J]. 中国煤炭, 2015, 41(10): 118-120.XU Qingwei,WANG Zhaofeng.The error existing in the predictions of gas emission quantityusing mine statistical method and its correction[J].China Coal,2015, 41(10): 118-120.[8] 何清. 工作面瓦斯涌出量预测研究现状及发展趋势[J]. 矿业安全与环保, 2016, 43(4): 98-101.HE Qing.Present Research situation on gas emission prediction of working face and its developing trend[J]. Mining Safety & Environmental Protection,2016, 43(4): 98-101.[9] 吕伏,梁冰,孙维吉,等. 基于主成分回归分析法的回采工作面瓦斯涌出量预测[J]. 煤炭学报, 2012, 37(1): 113-116.LV Fu,LIANG Bing,SUN Weiji,et al.Gas emission quantity prediction of working face based on principalcomponent regression analysis method[J]. Journal of China Coal Society, 2012, 37(1): 113-116.[10] 张占国,侯志华. 基于分源预测法的厚煤层分层开采瓦斯治理技术研究[J]. 矿业安全与环保, 2017, 44(1): 78-82.ZHANG Zhanguo,HOU Zhihua.Study on Gas Control Technology in Slicing Mining of Thick Coal Seam Based on Different-source Prediction Method[J]. Mining Safety & Environmental Protection, 2017, 44(1): 78-82.[11] 王孔善. 关于分源预测法预测矿井瓦斯涌出量准确性和适用性的探讨[J]. 煤矿安全, 2011, 42(11): 93-96.WANG Kongshan.Discussion on the accuracy and applicability of separate source prediction method for predicting mine gas emission[J]. Safety in Coal Mines, 2011, 42(11): 93-96.[12] 郎咸民. 基于瓦斯地质理论的矿井瓦斯含量与涌出量预测[J]. 煤炭技术, 2016, 35(10): 210-211.LANG Xianmin.Content and Emission Amount Prediction of Mine Gas Based on Gas Geological Theory [J]Coal Technology., 2016, 35(10): 210-211.[13] 崔俊飞. 瓦斯地质动态分析及瓦斯涌出实时预警系统[J]. 工矿自动化, 2015, 41(3): 5-9.CUI Junfei.Dynamic analysis of gas geology and real-time early warning system of gas emission[J]. Industry and Mine Automation, 2015, 41(3): 5-9.[14] 徐威,何保,张振文. 基于灰色遗传神经网络法的矿井瓦斯涌出量预测[J]. 安全与环境学报, 2011, 11(2): 176-178.XU Wei,HE Bao,ZHANG Zhenwen.Prediction of mine gas emission based on grey genetic neural network method[J]. Journal of Safety and Environment, 2011, 11(2): 176-178.[15] 魏林,付华,尹玉萍. 煤矿瓦斯涌出量预测的隐层递归反馈Elman模型[J]. 中国安全科学学报, 2016, 26(6): 42-46.WEI Lin,FU Hua,YIN Yuping.Gas emission prediction model of coal mine based on hidden recurrent feedback Elman[J]China Safety Science Journal, 2016, 26(6): 42-46.[16] 徐刚,王磊,金洪伟,等. 因子分析法与BP神经网络耦合模型对回采工作面瓦斯涌出量预测[J]. 西安科技大学学报, 2019, 39(6): 965-971.XU Gang,WANG Lei,JIN Hongwei,et al. Gas emission prediction in mining face by factor analysis and bp neural network coupling model[J].Journal of Xi'An University of Science and Technology, 2019, 39(6): 965-971.[17] 周西华,孙家正. [J]. 矿业安全与环保, 2018, 45(6): 43-47, 52.ZHOU Xihua,SUN Jiazheng.Prediction of gas emission based on principal factor analysis and improved bp neural network[J]. Mining Safety & Environmental Protection, 2018, 45(6): 43-47, 52.[18] 刘鹏,魏卉子,景江波,等. 基于增强CART回归算法的煤矿瓦斯涌出量预测技术[J]. 煤炭科学技术, 2019, 47(11): 116-122.LIU Peng,WEI Huizi,JING Jiangbo,et al.Predicting technology of gas emission quantity in coal mine based on enhanced CART regression algorithm[J].Coal Science and Technology, 2019, 47(11): 116-122.[19] 林海飞,周捷,高帆,等. 基于特征选择和机器学习融合的煤层瓦斯含量预测[J]. 煤炭科学技术, 2021, 49(5): 44-51.LIN Haifei,ZHOU Jie,Gao Fan,et al.Coal seam gas content prediction based on fusion of feature selection and machine learning[J].Coal Science and Technology, 2021, 49(5): 44-51.[20] 马恒,任美学,高科. 基于随机搜索优化XGBoost的瓦斯涌出量预测模型[J]. 中国安全生产科学技术, 2022, 18(5): 129-134.MA Heng,REN Meixue,GAO Ke.Prediction model of gas emission amount based on XGBoost optimized with random search algorithm[J].Journal of Safety Science and Technology, 2022, 18(5): 129-134. |