[1] 谢和平.深部岩体力学与开采理论研究进展[J].煤炭学报,2019,44(05):1283-1305.XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(05):1283-1305.[2] 袁亮.煤矿粉尘防控与职业安全健康科学构想[J].煤炭学报,2020,45(01):1-7.YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society,2020,45(01):1-7.[3] 康红普.我国煤矿巷道围岩控制技术发展70年及展望[J].岩石力学与工程学报,2021,40(01):1-30.YUAN Liang. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(01):1-30.[4] 刘泉声,刘滨,唐彬,等.煤矿深部巷道碎胀大变形灾害控制及大变形灾变环境下TBM快速成巷技术[J].煤炭学报,2025,50(01):224-244.LIU Quansheng, LIU Bin, TANG Bin, et al. The control of fragmenting swelling deformation disasters in deep mine roadways and the efficient TBM tunneling technology under such conditions[J]. Journal of China Coal Society,2025,50(01):224-244.[5] 严红,吴林,李桂臣,等.煤矿岩巷TBM快速掘进研究进展与展望[J].煤炭工程,2025,57(01):1-7.YAN Hong, WU Lin, LI Guichen, et al. Research progress and prospects of rapid TBM excavation in coal mine rock roadways[J]. Coal Engineering,2025,57(01):1-7.[6] 宋宜敏,孟秋杰,马洪福,等.基于改进人工智能算法的盾构刀具磨损寿命预测方法[J].工矿自动化,2024,50(S2):153-160+172.SONG Yimin, MENG Qiujie, MA Hongfu, et al. Prediction of TBM disc cutter wear life based on improved artificial intelligence algorithm[J]. Journal of Mine Automation,2024,50(S2):153-160+172.[7] 刘全辉,汪青仓,宋朝阳,等.煤矿超长斜井破碎地层敞开式TBM掘进技术与应对方法研究[J].煤炭工程,2024,56(07):53-58.LIU Quanhui, WANG Qingcang, SONG Zhaoyang, et al. Open TBM tunneling technology and measures for fractured strata in super-long inclines at western China coal mines [J]. Coal Engineering,2024,56(07):53-58.[8] 刘泉声,黄兴,潘玉丛,等.TBM在煤矿巷道掘进中的技术应用和研究进展[J].煤炭科学技术,2023,51(01):242-259.LIU Quansheng, HUANG Xing, PAN Yucong, et al. Application and research progress of TBM tunneling in coal mine roadway[J]. Coal Science and Technology,2023,51(01):242-259.[9] 王杜娟,贺飞,王勇,等.煤矿岩巷全断面掘进机(TBM)及智能化关键技术[J].煤炭学报,2020,45(06):2031-2044.WANG Dujuan, HE Fei, WANG Yong, et al. Tunnel boring machine (TBM) in coal mine and its intelligent key technology[J]. Journal of China Coal Society,2020,45(06):2031-2044.[10] 张鹏,赵腾跃,李元龙,等.结泥条件下TBM滚刀破岩能量演化机制及掘进参数优化研究[J].矿业研究与开发,2024,44(05):201-210.ZHANG Peng, ZHAO Tengyue, LI Yuanlong, et al. Research on the Energy Evolution Mechanism in Rock Breaking and Excavation Parameter Optimization of TBM Cutters Under the Condition of Argillization[J]. Mining Research and Development,2024,44(05):201-210.[11] GENG Q, HUANG Y, CHEN J, et al. Prediction of rock-breaking forces of tunnel boring machine (TBM) disc cutter based on machine learning methods[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research,2025,163:106682.[12] LIU B, WANG R, ZHAO G, et al. Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm[J]. Tunnelling and Underground Space Technology,2020,95:103103.[13] ZHOU J, LIU Z, LI C, et al. Cutting-edge approaches to specific energy prediction in TBM disc cutters: Integrating COSSA-RF model with three interpretative techniques[J]. Underground Space,2025,22241-262.[14] WANG X, ZHU H H, ZHU M Q, et al. An integrated parameter prediction framework for intelligent TBM excavation in hard rock[J]. Tunnelling and Underground Space Technology,2021,118:104196.[15] ROUHANI M M, FARROKH E. TBM performance prediction based on XGBoost models: a case study of the ghomrud water conveyance tunnel (Lots 3 and 4) [J]. Bulletin of Engineering Geology and the Environment,2025,84(6):304.[16] 王超.TBM岩机映射关系及其优化决策方法研究[D].浙江大学,2018.WANG Chao. Research on the Relationship of Rock Type and Machine Parameters of TBM and Its Optimal Decision Method[D]. Zhejiang University,2018.[17] 王亚旭.基于岩体信息感知与岩—机互馈机制的TBM控制参数优化决策方法[D].山东大学,2024.WANG Yaxu. Optimized Decision-Making Method of TBM Operational Parameters Based on Rock information Perception and Rock-Machine interaction Mechanism[D]. Shandong University,2024.[18] 孟中华.复杂地质条件下TBM掘进参数多目标优化方法及软件开发[D].北京交通大学,2021.MENG Zhonghua. Multi-objective optimization method of TBM boring parameters under complex geological conditions and software development[D]. Beijing Jiaotong University,2021.[19] SEYEDALI M, SEYED M M, ANDREW L. Grey Wolf Optimizer. Advances in Engineering Sofware[J].2014.69(69):46-61.[20] PARK J, SANDBERG I W. Approximation and radial-basis-function networks. Neural Computation[J].1993,5(2):305-316.[21] SHARAFIAN A, GHASEMI R. A novel terminal sliding mode observer with RBF neural network for a class of nonlinear systems. International Journal of Systems[J]. Control and Communications,2018,9(4):369-385.[22] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist Multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.[23] 赵红泽,刘元旭,郭帅,等.安家岭露天煤矿过背斜开采方案优化及比选[J].煤炭工程,2021,53(10):25-30.ZHAO Hongze, LIU Yuanxu, GUO Shuai, et al. Optimization and selection of mining schemes across anticlines in Anjialing Open-pit Coal Mine[J]. Coal Engineering,2021,53(10):25-30. |