Coal Engineering ›› 2023, Vol. 55 ›› Issue (5): 175-182.doi: 10.11799/ce202305030
Previous Articles Next Articles
Received:
2022-08-15
Revised:
2022-10-21
Online:
2023-05-19
Published:
2023-05-19
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 李元丽. 王国法:煤炭仍是能源安全稳定供应的“压舱石”[EB/OL](2021–02–23)[2021–02–23].[2] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[EB/OL]. [2022.02.25]. http://www.stats.gov.cn/tjsj/zxfb/202202/t20220227_1827960.html.[3] 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021,27(01): 1-33.[4] 李贺. 中国煤间接液化技术及未来前景概述[J]. 内蒙古石油化工, 2014,40(07): 97-156.[5] 曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020,26(01): 184-193.[6] 胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 中国科学院大学(中国科学院过程工程研究所), 2019.[7] MATJIE R H, LI Z, WARD C R, et al. Chemical composition of glass and crystalline phases in coarse coal gasification ash[J]. Fuel, 2008, 87: 857-869.[8] 张一昕, 郭旸, 王如梦, 等. 宁东煤气化细渣及其碳灰分离产物物理化学性质研究[J]. 煤炭学报, 2021,13: 1-9.[9] 卢珊珊. 气流床煤气化灰渣的特性研究[D]. 上海:华东理工大学, 2011.[10] 高旭霞. 气流床煤气化条件下形成的渣和灰的特征研究[D]. 上海:华东理工大学, 2009.[11] 高继光, 马银亮, 刘锐杰. 水煤浆气化灰渣综合利用和效益分析[J]. 节能与环保, 2014(2): 72-73.[12] 苑卫军, 韩明汝, 王辉. 发生炉煤气站无组织排放的污染与治理[J]. 玻璃, 2019,46(2): 49-52.[13] 党钾涛. 气流床煤粉气化煤中微量元素的迁移与配分[D]. 北京:中国矿业大学(北京), 2017.[14] 何绪文, 崔炜, 王春荣, 等. 气化炉渣的重金属浸出特性及化学形态分析[J]. 化工环保, 2014,34(5): 499-502.[15] XU Z, FGA B, YZ B, et al. Water distribution and adsorption behaviors of two typical coal gasification fine slags from Ningxia Region[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126935.[16] GUO F, LIU H, ZHAO X, et al. Insights on water temporal-spatial migration laws of coal gasification fine slag filter cake during water removal process and its enlightenment for efficient dewatering[J]. Fuel, 2021, 292(11): 120274.[17] 郭凡辉. 气流床煤气化细渣水分赋存及脱水能量作用机制研究[D]. 徐州:中国矿业大学, 2021.[18] FU B, CHENG Z, WANG D, et al. Investigation on the utilization of coal gasification slag in Portland cement: Reaction kinetics and microstructure[J]. Construction and Building Materials, 2022, 323: 126587.[19] LUO F, JIANG Y, WEI C. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material - ScienceDirect[J]. Construction and Building Materials, 2020, 269: 121259.[20] 闫秀清. 用煤渣烧制水泥熟料的试验研究[J]. 山西建筑, 2009,35(15): 151+213.[21] CHEN L M, CHOU M, CHOU J, et al. Producing Fired Bricks Using Coal Slag from a Gasification Plant in Indiana[J]. center for integrated data analytics wisconsin science center, 2009, 109: 115373.[22] 云正, 于鹏超, 尹洪峰. 气化炉渣对铁尾矿烧结墙体材料性能的影响[J]. 金属矿山, 2010(11): 183-186.[23] XIAOLIANG Z, ZHAOHENG G, WEN Y, et al. Durability of Concrete With Coal Gasification Slag and Coal Gangue Powder[J]. Frontiers in Materials, 2022, 697: 791178.[24] LI P, YU Q, QIN Q, et al. The Effects of Slag Compositions on the Coal Gasification Reaction in Molten Blast Furnace Slag[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 36: 73-79.[25] YU G, ZHU Q, CHI G, et al. Study on slag composition and flow property in a bench-scale OMB gasifier[J]. Fuel Processing Technology, 2012, 104: 136-143.[26] LI C C, QIAO X C, YU J G. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters, 2016, 167: 246-249.[27] 温龙英. 低温固相法活化煤气化细渣及其综合利用制备二氧化硅介孔材料[D]. 呼和浩特:内蒙古大学, 2015.[28] YITING X, XIAOLI C. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology, 2018, 39(3): 382-391.[29] ZHU D, ZUO J, JIANG Y, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. The Science of the Total Environment, 2020, 707: 136101-136102.[30] TANG Y, YIN H, YUAN H, et al. Phase and morphological transformation stages during carbothermal reduction nitridation process: From coal gasification slag wastes to Ca-α-SiAlON powders[J]. Advanced Powder Technology, 2016, 27(5): 2232-2237.[31] YUAN N, ZHAO A, HU Z, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review[J]. Chemosphere, 2021, 287: 132227.[32] ZHANG Y, DONG J, GUO F, et al. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water[J]. Minerals, 2018, 8(3): 116.[33] AL-GHOUTI M A, KHRAISHEH M A M, ALLEN S J, et al. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth[J]. Journal of Environmental Management, 2003, 69(3): 229-238.[34] WU Y H, XUE K, MA Q L, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2020, 312(2): 110742.[35] KIZITO S, WU S, KIRUI W K, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry[J]. Science of the Total Environment, 2015, 505: 102-112.[36] 韩永忠, 张思勇, 陈艳玲, 等. 一种利用合成氨煤气化渣处理含酚废水的方法: 201410189454.8[P]. 2014.07.23.[37] 朱玉龙, 沈中杰, 孙爽, 等. 煤粉掺烧气化细渣的燃烧特性研究[J]. 煤炭转化, 2021,44(04): 1-12.[38] GUO Y, GUO F, ZHOU L, et al. Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: Physiochemical properties, combustion characteristic and kinetic behavior[J]. Fuel, 2021, 292(2): 120387.[39] 晁岳建, 王洪记. 循环流化床锅炉掺烧气化渣和煤泥的可行性研究[J]. 化肥工业, 2015,42(3): 48-50.[40] 葛晓东. 煤气化细渣表面性质分析及浮选提质研究[J]. 中国煤炭, 2019,45(01): 107-112.[41] WANG W, LIU D, TU Y, et al. Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation[J]. Fuel, 2020, 278: 118195.[42] 赵世永, 吴阳, 李博. Texaco气化炉灰渣理化特性与脱碳研究[J]. 煤炭工程, 2016,48(9): 29-32.[43] 吴阳. 煤气化灰渣的分选加工利用研究[D]. 西安:西安科技大学, 2017.[44] 吴思萍, 赵凯, 董永胜, 等. 气化细渣浮选脱碳研究进展[J]. 华电技术, 2020,42(07): 81-86.[45] 刘冬雪, 胡俊阳, 冯启明, 等. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化, 2018,41(5): 73-80.[46] GUO F, MIAO Z, GUO Z, et al. Properties of flotation residual carbon from gasification fine slag[J]. Fuel, 2020, 267: 117043.[47] GUO F, GUO Y, GUO Z, et al. Recycling Residual Carbon from Gasification Fine Slag and Its Application for Preparing Slurry Fuels[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8830-8839.[48] GUO F, ZHAO X, GUO Y, et al. Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124148.[49] ZHANG R, GUO F, XIA Y, et al. Recovering unburned carbon from gasification fly ash using saline water[J]. Waste Management, 2019, 98: 29-36.[50] FAN G, ZHANG M, PENG W, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes[J]. Journal of Cleaner Production, 2021, 286: 124943.[51] SHI D, ZHANG J, HOU X, et al. Adsorption mechanism of a new combined collector (PS-1) on unburned carbon in gasification slag[J]. Science of The Total Environment, 2022, 818: 151856.[52] 于伟, 王学斌, 刘莉君, 等. 高含碳煤气化细渣浮选行为研究[J/OL]. 煤炭学报: 1-14[2022-02-19]. [53] 赵鹏, 高光耀, 王建友, 等. 一种德士古炉煤气化废渣泥综合利用装置: 201720406621.9[P]. 2017.12.15.[54] 董连平. 一种煤气化废渣高效分级制备高纯灰和高纯碳的方法: 201810013201.3[P]. 2021.02.09.[55] 支羽轩, 何平. 一种煤气化炉渣纯化工艺及实现其工艺的系统:201710897261.1[P]. 2018.01.30.[56] CHANCHAN, PAN, QINFENG, et al. Characteristics of Different Sized Slag Particles from Entrained-Flow Coal Gasification[J]. Energy & Fuels, 2015, 30(2): 1487-1495.[57] 梅琳, 卢啸风, 王泉海, 等. 飞灰流化床燃烧脱碳的试验研究[J]. 中国电机工程学报, 2014,34(26): 4454-4461.[58] LI J, CHEN Z, YUAN L, et al. Effects of flotation and acid treatment on unburned carbon recovery from atmospheric circulating fluidized bed coal gasification fine ash and application evaluation of residual carbon[J]. Waste Management, 2021, 136: 283-294.[59] ZHANG R, GUO F, XIA Y, et al. Recovering unburned carbon from gasification fly ash using saline water[J]. Waste Management, 2019, 98: 29-36. |
[1] | . Multi-model Switching Adaptive Control for Dense Medium Separation Process [J]. Coal Engineering, 2023, 55(5): 26-31. |
[2] | . [J]. Coal Engineering, 2023, 55(5): 160-165. |
[3] | . Experimental study on influence of fine coal slime on flotation effect [J]. Coal Engineering, 2023, 55(5): 166-169. |
[4] | . A preliminary study on the standard research and demonstration application of coal washing information model CPIM [J]. Coal Engineering, 2023, 55(4): 23-28. |
[5] | . [J]. Coal Engineering, 2023, 55(4): 168-172. |
[6] | w gx. [J]. Coal Engineering, 2023, 55(3): 167-172. |
[7] | . Discussion on roadway design method of underground coal gangue intelligent dry separation system [J]. Coal Engineering, 2023, 55(1): 6-11. |
[8] | . Intelligent Transformation of Filter Press System in Dahaize Coal Preparation Plant [J]. Coal Engineering, 2023, 55(1): 18-22. |
[9] | . [J]. Coal Engineering, 2023, 55(1): 156-161. |
[10] | . Research on BIM model reconstruction method of coal preparation plant in design and construction stage [J]. Coal Engineering, 2022, 54(12): 28-32. |
[11] | Zi qiZhu. Effect of non-magnetic substance on the cyclone stability of dense medium suspension and separation process [J]. Coal Engineering, 2022, 54(12): 170-175. |
[12] | . [J]. Coal Engineering, 2022, 54(12): 176-180. |
[13] | . Experimental Study on the Properties of Coal Slime and Its Sedimentation under the Action of Coagulant [J]. Coal Engineering, 2022, 54(12): 181-186. |
[14] | . [J]. Coal Engineering, 2022, 54(11): 48-52. |
[15] | . [J]. Coal Engineering, 2022, 54(10): 22-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||