Coal Engineering ›› 2020, Vol. 52 ›› Issue (11): 154-160.doi: 10.11799/ce202011030
Previous Articles Next Articles
Received:
2019-09-28
Revised:
2020-01-29
Online:
2020-11-16
Published:
2020-12-16
[1] | 程军, 曹欣玉, 周俊虎, 等.多元优化动力配煤方案的研究[J].煤炭学报, 2000, 25(1):81-85 |
[2] | CHENG Jun, CAO Xinyu, ZHOU Junhu, et al.Multioptimization technology for power coal blending[J].Journal of China Coal Society, 2000, 25(1):81-85 |
[3] | Mason D M, Gandhi K N.Formulas for calculating the calorific value of coal and coal chars: Development,tests,and uses[J].Fuel Processing Technology, 1983, 7(1):11-22 |
[4] | Given P H, Weldon D, Zoeller J H.Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications[J].Fuel, 1986, 65(6):849-854 |
[5] | 姜英, 涂华, 陈亚飞, 等.我国商品褐煤低位发热量回归式的推导[J].煤炭学报, 2004, 29(4):477-480 |
[6] | JIANG Ying, TUHua, CHEN Yafei, et al.Equations of calculating calorific value of lignite in China[J].Journal of China Coal Society, 2004, 29(4):477-480 |
[7] | Majumder A K, Jain R, Banerjee P, et al.Development of a new proximate analysis based correlation to predict calorific value of coal[J].Fuel, 2008, 87(13):3077-3081 |
[8] | Chelgani S C, Makaremi S.Explaining the relationship between common coal analyses and Afghan coal parameters using statistical modeling methods[J].Fuel Processing Technology, 2013, 110(2):79-85 |
[9] | Patel S U, Kumar B J, Badhe Y P, et al.Estimation of gross calorific value of coals using artificial neural networks[J].Fuel, 2007, 86(3):334-344 |
[10] | Mesroghli S, Jorjani E, Chelgani S C.Estimation of gross calorific value based on coal analysis using regression and artificial neural networks[J].International Journal of Coal Geology, 2009, 79(1):49-54 |
[11] | 苏伟, 周永言, 李树成.建立非线性模型研究动力用煤煤质特性指标间的关系[J].动力工程, 2003, 23(4):2603-2607 |
[12] | Su Wei, Zhou Yongyan, Li Shucheng.Research on relationship among characteristic indexes of the dynamical coal 's quality based on nonlinear matrix[J].Power Engineering, 2003, 23(4):2603-2607 |
[13] | 关跃波, 尹涌澜, 孙斌, 等.应用最小二乘支持向量机预测煤的发热量[J].东北电力大学学报, 2006, 26(6):66-69 |
[14] | Guan Yuebo, Yin Yonglan, Sun Bin, et al.Forecasting calorific value of coal with the method of least square support vector machine[J].Journal of Northeast Dianli University, 2006, 26(6):66-69 |
[15] | Kav?ek D, Bednárová A, Biro M, et al.Characterization of Slovenian coal and estimation of coal heating value based on proximate analysis using regression and artificial neural networks[J].Central European Journal of Chemistry, 2013, 11(9):1481-1491 |
[16] | 谭鹏, 李鑫, 张小培, 等.基于工业分析的煤质发热量预测[J].煤炭学报, 2015, 40(11):2641-2646 |
[17] | Tan Peng, Li Xin, Zhang Xiaopei, et al.Prediction of coal heating value based on proximate analysis[J].Journal of China Coal Society, 2015, 40(11):2641-2646 |
[18] | 潘华引.动力配煤优化燃烧特性及非线性预测研究[D]. 浙江大学, 2008. |
[19] | Pan Huayin.Optimization and nonlinear prediction of combustion characteristics of coal blend[D]. Zhe Jiang University, 2008. |
[20] | 卢远梅, 王维雪, 刘寅, 等.基于、-测定煤中碱金属元素的对比分析[J].新疆大学学报自然科学版, 2017, 34(3):303-307 |
[21] | Lu Yuanmei, Wang Weixue, Liu Yin, et al.Comparative analysis based on AAS and ICP-AES determination of alkali metals in coal[J].Journal of Xinjiang University (Natural Science Edition), 2017, 34(3):303-307 |
[22] | 戴财胜.动力配煤的理论与应用研究[D]. 中国矿业大学(北京), 2000. |
[23] | Dai Caisheng.Study on theory and application of power coal blending[D]. China University of Mining and Technology (Beijing), 2000. |
[24] | 程军, 王鑫, 佀婷婷, 等.电厂多元优化动力配煤燃烧特性研究[J].热能动力工程, 2016, 31(2):99-103 |
[25] | Cheng Jun, Wang Xin, Si Tingting, et al.Combustion properties of blended coal for power plant using multivariate optimization[J].Journal of Engineering for Thermal Energy and Power, 2016, 31(2):99-103 |
[26] | 陈栋楠.动力配煤预测方法和配煤优化模型研究[D]. 中南大学, 2012. |
[27] | Chen Dongnan.Research on optimization models and prediction methods of coal blending[D]. Central South University, 2012. |
[28] | Dombi G W, Nandi P, Saxe J M, et al.Prediction of rib fracture injury outcome by an artificial neural network[J].Journal of Trauma, 1995, 39(5):915-921 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 59
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 619
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||