煤炭工程 ›› 2025, Vol. 57 ›› Issue (8): 122-129.doi: 10. 11799/ ce202508017

• 研究探讨 • 上一篇    下一篇

融合智能优化算法的TBM可掘性预测与围岩分级方法研究

沈远伟,刘红丽,朱昊,张超凡   

  1. 1. 陕西正通煤业有限责任公司,陕西 咸阳 713699

    2. 西安科技大学 能源学院,陕西 西安 710054

  • 收稿日期:2025-06-23 修回日期:2025-07-14 出版日期:2025-08-11 发布日期:2025-09-11
  • 通讯作者: 张超凡 E-mail:xustzcf@163.com

TBM boreability prediction and rock mass classification method based on fused intelligent optimization algorithms

  • Received:2025-06-23 Revised:2025-07-14 Online:2025-08-11 Published:2025-09-11

摘要:

复杂多变的围岩条件易引发掘进过程中全断面隧道掘进机(TBM)负载剧烈波动、刀具磨损加剧、推进效率降低等问题。为建立精准的可掘性预测与围岩分级方法,为TBM 掘进参数优化及施工组织提供科学支撑,提出一种融合灰狼优化(GWO)、变分模态分解(VMD)、麻雀搜索算法(SSA)与长短期记忆网络(LSTM)的智能模型(GWO-VMD-SSA-LSTM),用于实现TBM可掘性的精确预测与围岩分级。测试结果显示,该模型在测试集上的平均绝对误差(MAE)为0.4324、均方根误差(RMSE)为0.6005、平均绝对百分比误差(MAPE)为1. 5486%、决定系数(R2)为0. 9527,性能显著优于其他对比模型,具备更强的预测精度与泛化能力。基于此,进一步构建了基于FPI的围岩分级体系,实现了围岩可掘性等级的快速判定。工程验证表明,该方法能够有效反映不同岩层的掘进难易程度,可为复杂地质条件下TBM掘进施工提供智能化辅助决策支持。

关键词: TBM , 可掘性预测 , 围岩分级 , 巷道掘进 , 智能优化算法 , 深度学习

Abstract:

As coal mines and underground engineering projects extend into deep and geologically complex regions, the application of Tunnel Boring Machine (TBM) in rapid roadway excavation has become increasingly widespread. However, highly variable and complex geological conditions often lead to severe equipment load fluctuations, accelerated cutter wear, and reduced excavation efficiency, which significantly hinder the stable and efficient operation of TBM. Therefore, it is essential to establish an accurate boreability prediction and rock mass classification method to provide a scientific basis for TBM parameter optimization and construction planning. This study proposes an intelligent prediction model—GWO-VMD-SSA-LSTM—by integrating Grey Wolf Optimization (GWO), Variational Mode Decomposition (VMD), Sparrow Search Algorithm (SSA), and Long Short-Term Memory (LSTM) networks. The model enables accurate prediction of TBM boreability and quantitative classification of surrounding rock. Results show that the model achieves excellent performance on the test set, with a MAE of 0.4324, RMSE of 0.6005, MAPE of 1.5486%, and R2 of 0.9527, significantly outperforming other comparison models in terms of accuracy and generalization ability. Furthermore, a rock mass classification system based on the Field Penetration Index (FPI) was developed, enabling rapid determination of boreability levels. Engineering validation demonstrates that the method effectively reflects excavation difficulty across various lithologies and provides intelligent decision-making support for TBM tunneling in complex geological conditions, offering significant practical value for advancing intelligent excavation in coal mine roadways.

中图分类号: