煤炭工程 ›› 2024, Vol. 56 ›› Issue (7): 127-135.doi: 10.11799/ce202407020

• 研究探讨 • 上一篇    下一篇

基于随机森林算法的煤巷顶板位移预测与应用

陈攀,马鑫民,向俊杰,等   

  1. 1. 云南省水利水电勘测设计院有限公司
    2. 中国矿业大学(北京)
    3. 中国矿业大学(北京)力学与土木工程学院
  • 收稿日期:2023-11-11 修回日期:2024-03-26 出版日期:2024-07-20 发布日期:2024-07-20
  • 通讯作者: 马鑫民 E-mail:mxm@cumtb.edu.cn

Roof displacement prediction and application of coal roadway based on Random Forest algorithm

  • Received:2023-11-11 Revised:2024-03-26 Online:2024-07-20 Published:2024-07-20

摘要: 煤巷围岩稳定控制是保障煤矿安全高效开采的关键,煤巷顶板位移量是反应煤巷围岩稳定性的关键指标,本研究提出机器学习方法对煤巷顶板位移进行超前预测研究。确定了煤巷顶板位移的8个重要影响指标,建立了煤巷顶板位移预测数据库并对数据进行了指标相关性和重要性分析。基于RF、GA-SVM和GA-ANN分别建立了三种煤巷顶板位移预测模型,选用RMSE、MAE和R2三个指标来评价模型的性能。结果显示,RF模型测试性能最佳, R2=0.909, RMSE=20.475,MAE=16.790,GA-ANN模型的性能最差。采用十折交叉方法对RF模型和GA-ANN模型进行可靠性验证,结果显示RF模型的稳定性更高,平均R2为0.891。将RF模型应用到干河煤矿2-1121巷,预测值与实际值的绝对误差为19 mm,相对误差为11.18%,说明了RF模型对煤巷顶板位移预测的准确性与可靠性,研究结果对煤巷顶板位移预测提供了一种新途径。

关键词: 随机森林, 煤矿巷道, 顶板位移, 机器学习, 预测

Abstract: The stability control of surrounding rock in coal roadway is the key to ensure the safe and efficient mining of coal mine. In this paper, machine learning method is introduced to predict the roof displacement of coal roadway in advance. Firstly, eight important influence indexes of roof displacement of coal roadway are se-lected, and the prediction database of roof displacement of coal roadway is established, and the correlation and importance of the data are analyzed. Then, based on RF, GA-SVM and GA-ANN, three kinds of coal roadway roof displacement prediction models were established respectively, and RMSE, MAE and R2 were selected to evaluate the performance of the models. The results show that the RF model has the best test performance, R2 = 0.909, RMSE = 20.475, MAE = 16.790, while the GA-ANN model has the worst performance. The ten-fold cross-validation method was used to verify the reliability of the RF model and the GA-ANN model, and it is found that the stability of RF model is higher, with an average R2 of 0.891. Finally, the RF model is applied to the 2-1121 roadway of Ganhe Coal Mine. The absolute error between the predicted value and the actual value is 19 mm, and the relative error is 11.18 %. The RF model makes a relatively accurate prediction of the roof displacement of the coal roadway.

中图分类号: