[1] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报, 2016, 45(06):1071-1081.Kang Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology, 2016, 45(06): 1071-1081.[2] 孙继平, 钱晓红. 2004—2015年全国煤矿事故分析[J]. 工矿自动化, 2016, 42(11):1-5.Sun Jiping, Qian Xiaohong. Analysis of coal mine accidents in China during 2004-2015[J]. Journal of Mine Automation, 2016, 42(11): 1-5.[3] 顾清华, 江松, 李学现, 等. 人工智能背景下采矿系统工程发展现状与展望[J]. 金属矿山, 2022, 57(05):10-25.Gu Qinghua, Jiang Song, Li Xuexian, et al. Development Status and Prospect of Mining System Engineering Under the Background of Artificial Intelligence[J]. Metal Mine | Met Min, 2022, 57(05):10-25.[4] 马鑫民, 陈 攀, 陈 晨, 等. 基于机器学习的煤巷围岩稳定性预测与应用[J]. 矿业科学学报, 2023, 8(02):156-165.Ma Xinmin, Chen Pan, Chen Chen, et al. Prediction of surrounding rock stability of coal roadway based on machine learning and its application[J]. Journal of Mining Science and Technology, 2023, 8(02):156-165.[5] 杨仁树, 王茂源, 马鑫民, 等. 煤巷围岩稳定性分类研究[J]. 煤炭科学技术, 2015, 43(10):40-45+92.Yang Renshu, Wang Maoyuan, Ma Ximnin, et al. Research on surrounding rock stability classification of coal drift[J]. Coal Science and Technology, 2015, 43(10):40-45+92.[6] Qingyun Xu, Yongming Li, Jie Lu, et al. The use of surrounding rock loosening circle theory combined with elastic-plastic mechanics calculation method and depth learning in roadway support[J]. PloS one, 2020, 15(7): e0234071.[7] 李启月, 陈 亮, 范作鹏, 等. 地下工程支护效果的ARMA预测模型及应用[J]. 矿冶工程, 2013, 33(03):8-12.Li Qiyue, Chen Liang, Fan Zuopeng, et al. ARMA Model and Its Application in Prediction of Underground Engineering Supporting Effect[J]. Mining and Metallurgical Engineering, 2013, 33(03):8-12.[8] 于宁锋, 杨化超, 邓喀中, 等. 基于PSO和SVM的矿区地表下沉系数预测[J]. 辽宁工程技术大学学报(自然科学版), 2008, 27(03):365-367.Yu Ningfeng, Yang Huachao, Deng Kezhong, et al. Calculation of surface subsidence coefficient in mining areas using support vector machine regression[J]. Journal of Liaoning Technical University (Natural Science), 2008, 27(03):365-367.[9] 李启月, 许 杰, 王卫华, 等. 基于数学形态学多尺度分析的顶板下沉量预测[J]. 岩土力学, 2013, 34(02):433-438+474.Li Qiyue, Xu Jie, Wang Weihua, et al. Roof settlement predicting based on multi-scale mathematical morphological analysis[J]. Rock and Soil Mechanics, 2013, 34(02):433-438+474.[10] 刘唐圣, 王成帅, 王 飞. 回采巷道锚杆支护效果分类预测的Fisher判别分析模型及应用[J]. 煤矿安全, 2013,4 4(10):205-208.Liu Tangsheng, Wang Chengshuai, Wang Fei. Fisher Discriminant Analysis Model for Classifying Bolt Support Effects in Mining Gateway and Its Application[J]. Safety in Coal Mines, 2013, 44(10):205-208.[11] Mahdevari, Satar, Khodabakhshi, Mohammad Bagher. A hierarchical local-model tree for predicting roof displacement in longwall tailgates[J]. Neural Computing and Applications, 2021, 33(21):14909-14928.[12] Mahdevari, Satar, Khodabakhshi, Mohammad Bagher. A hybrid PSO-ANFIS model for predicting unstable zones in under-ground roadways[J]. Tunnelling and Underground Space Technology, 2021, 117:104167.[13] 李相熙, 朱万成, 任 敏. 弓长岭露天矿采空区顶板位移超前预测算法[J]. 采矿与岩层控制工程学报, 2021, 3(3):54-61.Li Xiangxi, Zhu Wancheng, Ren Min. Roof displacement prediction algorithm of goaf in Gongchangling Open-pit Mine[J]. Journal of Mining and Strata Control Engineering, 2021, 3(3):54-61.[14] Xiliang Zhang, Hoang Nguyen, Xuan-Nam Bui, et al. Evaluating and Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based Particle Swarm Optimization[J]. Tunnelling and Underground Space Technology, 2020, 103:103517.[15] Renpeng Chen, Pin Zhang, Huaina Wu, et al. Prediction of shield tunneling-induced ground settlement using machine learning techniques[J]. Frontiers of Structural and Civil Engineering, 2019, 13(6):1363-1378.[16] 谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报, 2021, 40(06): 1186-1194.Tan Wenkan, Ye Yicheng, Hu Nanyan, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(06): 1186-1194.[17] Speiser Jaime Lynn, Miller Michael E., Tooze Janet, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Application, 2019, 134:93-101.[18] 吕红燕, 冯 倩. 随机森林算法研究综述[J]. 河北省科学院学报, 2019, 36(03):37-41.Lv Hongyan, Feng Qian. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences, 2019, 36(03):37-41.[19] Wang, Y.S., Xia, S.T.. Summary of random forest algorithms for ensemble learning[J]. Information and Communications Technologies, 2018, 12(01):49-55.[20] 许建华, 张学工, 李衍达. 支持向量机的新发展[J]. 控制与决策, 2004, 19(05):481-484+495.Xu Jianhua, Zhang Xuegong, Li Yanda. Advances in support vector machines. Control and Decision, 2004, 19(05):481-484+495.[21] Katoch Sourabh, Chauhan Sumit Singh, Kumar Vijay. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2020, 80(5):8091-8126.[22] 李孝安, 康继昌, 蔡小斌, 等. 进化神经网络研究进展[J]. 控制与决策, 1998, 13(6):617-623.Li Xiaoan, Kang Jichang, Cai Xiaobin, et al. Research progress of evolutionary neural networks[J]. Control and Decision, 1998, 13(6):617-623.[23] Wong Tzu-Tsung, Yeh Po-Yang. Reliable Accuracy Estimates from k-Fold Cross Validation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(8): 1586-1594. |