[1]JIE D, XU X, GUO F.The future of coal supply in China based on non-fossil energy development and carbon price strategies[J].Energy, 2021, 220:119644.-
[2]袁亮.我国煤矿安全发展战略研究[J].中国煤炭, 2021, 47(6):1-6
[3]新华社.中共中央办公厅?国务院办公厅关于进一步加强矿山安全生产工作的意见[N].2023.
[4]王诚聪.基于视频分析的煤矿安全生产典型违规行为识别[D].唐山:华北理工大学, 2021.
[5]党小超, 黄亚宁, 郝占军, 等.基于信道状态信息的无源室内人员日常行为检测方法[J].通信学报, 2019, 40(04):160-70
[6]DING W, DING C, LI G, et al.Skeleton-based square grid for human action recognition with 3D convolutional neural network [J].IEEE Access, 2021, 9(54078):89-89
[7]谢斌红, 栗宁君, 陈立潮, 等.基于-的人员在岗状态检测算法研究[J].太原科技大学学报, 2021, 42(06):441-8
[8]WOO S, PARK J, LEE J-Y, et al.Cbam: Convolutional block attention module[C]. Proceedings of the European conference on computer vision (ECCV), 2018: 3-19.
[9]SRINIVAS A, LIN T-Y, PARMAR N, et al.Bottleneck transformers for visual recognition[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition., 2021: 16519-16529.
[10]HE K, ZHANG X, REN S, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-16
[11]LIN T-Y, DOLLáR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017: 2117-2125.
[12]LIU S, QI L, QIN H, et al.Path aggregation network for instance segmentation[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 8759-8768.
[13]HUA B-S, TRAN M-K, YEUNG S-K.Pointwise convolutional neural networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 984-993.
[14]VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[J].Advances in neural information processing systems, 2017, 30:-
[15]NIU Z, ZHONG G, YU H.A review on the attention mechanism of deep learning[J].Neurocomputing, 2021, 452:48-62
[16]GAO S-H, CHENG M-M, ZHAO K, et al.Res2net: A new multi-scale backbone architecture[J].IEEE transactions on pattern analysis and machine intelligence, 2019, 43(2):652-62 |