煤炭工程 ›› 2024, Vol. 56 ›› Issue (2): 24-30.doi: 10.11799/ce202402004

• 设计技术 • 上一篇    下一篇

融合多种模态特征的井下供水管网流量预测

赵安新,刘鼎,郭仕林,等   

  1. 西安科技大学
  • 收稿日期:2023-05-09 修回日期:2023-06-20 出版日期:2024-02-20 发布日期:2024-02-29
  • 通讯作者: 刘鼎 E-mail:1362302037@qq.com

Flow prediction method of underground water supply network based on multi-modal characteristics

  • Received:2023-05-09 Revised:2023-06-20 Online:2024-02-20 Published:2024-02-29

摘要: 煤矿井下供水系统是煤矿安全生产的生命线, 供水管网水流量的预测是供水系统优化调度的基础, 预测的重要性对供水调度有重要影响。文章提出了一种融合多模态数据特征的煤矿井下供水管网流量预测方法, 该方法通过图深度学习的方法实现了对井下管网空间拓扑结构、历史时间依赖、井下实际生产工况、周期相关等多种数据模态特征的融合, 具体的, 使用添加空间注意机制的图卷积神经网络获取井下管网监测点的空间拓扑关系, 然后利用循环神经网络中的门控循环单元获取监测点的时间依赖, 并融合煤矿生产规律与不同周期的流量数据形成最终预测结果, 通过陕西亭南煤矿实际数据进行实验, 结果表明, 提出的预测方法相较于SVM、LSTM、STGCN 等方法能更准确地预测井下流量未来的趋势, 预测偏差分别降低了9. 3%、6. 84%和3. 65%。

关键词: 煤矿井下, 供水管网, 图神经网络, 深度学习, 流量预测

Abstract: The underground water supply system of coal mine was the lifeline of coal mine safety production. The prediction of water flow of water supply network was the basis of water supply system optimization dispatching. The importance of prediction has important influence on water supply dispatching. This paper proposes a method of flow prediction of underground coal mine water supply network that integrates multi-modal data features. Different from previous methods, deep learning method realizes the integration of multiple data related to spatial topology structure of underground pipe network, historical time dependence, actual underground production conditions and cycle. Specifically, The graph convolutional neural network adding spatial attention mechanism is used to obtain the spatial topological relationship of the monitoring points of underground pipe network, and then the gated circulation unit in the cyclic neural network is used to obtain the time dependence of the monitoring points, and the final prediction results are formed by integrating the production rules of coal mine with the flow data of different periods. Through the actual data experiment of a mine in Shaanxi Province, The results show that compared with SVM, LSTM, STGCN and other methods, the proposed method can more accurately predict the future trend of downhole flow, and the prediction deviation is reduced by 9.3%, 6.84% and 3.65%, respectively.

中图分类号: