煤炭工程 ›› 2025, Vol. 57 ›› Issue (6): 158-163.doi: 10. 11799/ ce202506020

• 研究探讨 • 上一篇    下一篇

基于BP神经网络算法的注CO2煤体CH4置换率预测研究

 贾东旭   

  1. 1. 中煤科工集团沈阳研究院有限公司,辽宁 抚顺 113122

    2. 煤矿灾害防控全国重点实验室,辽宁 抚顺 113122

  • 收稿日期:2025-03-03 修回日期:2025-04-10 出版日期:2025-06-11 发布日期:2025-07-15
  • 通讯作者: 苏伟伟 E-mail:sww4516@163.com

Prediction of CH4 displacement rate in CO2 -injected coal using BP neural network

  • Received:2025-03-03 Revised:2025-04-10 Online:2025-06-11 Published:2025-07-15

摘要:

为精准预测煤层注CO2气体后的CH4置换率,以无烟煤为研究对象,基于不同煤层温度T、不同CO2注入压力P0及不同初始吸附平衡压力P1条件下煤样的CH4置换率η实验数据,采用BP 神经网络算法,建立了该煤样的CH4置换率预测模型,并通过决定系数R2、均方根误差RMSE和平均绝对误差MAE对预测模型精度进行评估。结果表明,煤样的CH4置换率η随煤层温度T和CO2注入压力P0的增加而增大,但随初始吸附平衡压力P1的增加而减小;所建立的预测模型在测试集实验数据的应用中,其决定系数R2值为0.986,均方根误差RMSE值为0.349,平均绝对误差MAE值为0.312,并且预测值和实际值的误差不超过2.30%,说明所建立预测模型的预测精度较高,可为煤层注气技术开采提供指导。

关键词: 煤层注气 , 注CO2气体 , 甲烷置换率 , 瓦斯预测 , 瓦斯涌出 , 驱替CH4实验

Abstract: To accurately predict the CH4 replacement rate after injecting CO2 gas into coal seams, this article takes anthracite as the research object, and based on the CH4 replacement rate η of coal samples under different coal seam temperatures T, different CO2 injection pressures P0, and different initial adsorption equilibrium pressures P1 Based on experimental data, a prediction model for the CH4 replacement rate of the coal sample was established using the BP neural network algorithm. The accuracy of the prediction model was evaluated through the determination coefficient R2, root mean square error RMSE, and mean absolute error MAE. The results indicate that the CH4 replacement rate η of the coal sample increases with the increase of coal seam temperature T and CO2 injection pressure P0, but decreases with the increase of initial adsorption equilibrium pressure P1; The established prediction model has a determination coefficient R2 value of 0.986, a root mean square error RMSE value of 0.349, a mean absolute error MAE value of 0.312 in the application of experimental data in the test set. The error between the predicted value and the actual value does not exceed 2.30%, indicating that the prediction accuracy of the established prediction model is high and can provide guidance for gas injection mining in this coal seam.

中图分类号: